算法——贪心算法(集合覆盖 -- Java代码实现)

贪心算法介绍

  1. 贪婪算法(贪心算法)是指在对问题进行求解时,在每一步选择中都采取最好或者最优(即最有利)的选择,从而希望能够导致结果是最好或者最优的算法。
  2. 贪婪算法所得到的结果不一定是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果。

问题:使用最少的广播台覆盖全部的地区;

广播台覆盖区域
A北京、上海、天津
B广州、上海、深圳
C成都、上海、杭州
D上海、天津
E杭州、大连

思路分析:
➢ 如何找出覆盖所有地区的广播台的集合呢,使用穷举法实现,列出每个可能的广播台的集合,这被称为幂集。假设总的有n个广播台,则广播台的组合总共有2^n - 1个,

➢使用贪婪算法,效率高:
目前并没有算法可以快速计算得到准备的值,使用贪婪算法,则可以得到非常接近的解,并且效率高。选择策略上,因为需要覆盖全部地区的最小集合:

  1. 遍历所有的广播电台,找到一个覆盖了最多未覆盖的地区的电台(此电台可能包含一些已覆盖的地区,但没有关系)
  2. 将这个电台加入到一-个集合中(比如ArrayList),想办法把该电台覆盖的地区在下次比较时去掉。
  3. 重复第1步直到覆盖了全部的地区

代码实现:可以直接发现上述问题的解决的是要选择ABCE四个广播台:

package greedy;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;

public class GreedyAlgorithm {
	public static void main(String[] args) {
		// 创建广播台
		HashMap<String, HashSet<String>> broadcast = new HashMap<String, HashSet<String>>();
		HashSet<String> hashset1 = new HashSet<String>();
		hashset1.add("北京");
		hashset1.add("上海");
		hashset1.add("天津");

		HashSet<String> hashset2 = new HashSet<String>();
		hashset2.add("广州");
		hashset2.add("上海");
		hashset2.add("深圳");

		HashSet<String> hashset3 = new HashSet<String>();
		hashset3.add("成都");
		hashset3.add("上海");
		hashset3.add("杭州");

		HashSet<String> hashset4 = new HashSet<String>();
		hashset4.add("上海");
		hashset4.add("天津");

		HashSet<String> hashset5 = new HashSet<String>();
		hashset5.add("杭州");
		hashset5.add("大连");

		broadcast.put("A", hashset1);
		broadcast.put("B", hashset2);
		broadcast.put("C", hashset3);
		broadcast.put("D", hashset4);
		broadcast.put("E", hashset5);

		// 创建一个所有地区的
		HashSet<String> allAreas = new HashSet<String>();
		allAreas.add("北京");
		allAreas.add("上海");
		allAreas.add("天津");
		allAreas.add("广州");
		allAreas.add("深圳");
		allAreas.add("成都");
		allAreas.add("杭州");
		allAreas.add("大连");

		// 使用一个电台集合
		ArrayList<String> selects = new ArrayList<String>();

		// 临时变量,覆盖的地区和未覆盖地区的交集
		HashSet<String> temp = new HashSet<String>();

		// 定义一个在一次遍历过程中覆盖最多地区的广播台
		String maxKey = null;
		while (allAreas.size() != 0) {
			// 遍历广播台
			for (String key : broadcast.keySet()) {
				temp.clear();
				HashSet<String> areas = broadcast.get(key);
				temp.addAll(areas);
				// 取交集,之后交集再赋给temp
				temp.retainAll(allAreas);
				if (temp.size() > 0 && (maxKey == null || temp.size() > broadcast.get(maxKey).size())) {
					maxKey = key;
				}
			}
			if (maxKey != null) {
				selects.add(maxKey);
				allAreas.removeAll(broadcast.get(maxKey));
			}
			maxKey = null;
		}
		System.out.println("结果:" + selects);
	}
}

查看结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Modify_QmQ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值