贪心算法介绍
- 贪婪算法(贪心算法)是指在对问题进行求解时,在每一步选择中都采取最好或者最优(即最有利)的选择,从而希望能够导致结果是最好或者最优的算法。
- 贪婪算法所得到的结果不一定是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果。
问题:使用最少的广播台覆盖全部的地区;
广播台 | 覆盖区域 |
---|---|
A | 北京、上海、天津 |
B | 广州、上海、深圳 |
C | 成都、上海、杭州 |
D | 上海、天津 |
E | 杭州、大连 |
思路分析:
➢ 如何找出覆盖所有地区的广播台的集合呢,使用穷举法实现,列出每个可能的广播台的集合,这被称为幂集。假设总的有n个广播台,则广播台的组合总共有2^n - 1个,
➢使用贪婪算法,效率高:
目前并没有算法可以快速计算得到准备的值,使用贪婪算法,则可以得到非常接近的解,并且效率高。选择策略上,因为需要覆盖全部地区的最小集合:
- 遍历所有的广播电台,找到一个覆盖了最多未覆盖的地区的电台(此电台可能包含一些已覆盖的地区,但没有关系)
- 将这个电台加入到一-个集合中(比如ArrayList),想办法把该电台覆盖的地区在下次比较时去掉。
- 重复第1步直到覆盖了全部的地区
代码实现:可以直接发现上述问题的解决的是要选择ABCE四个广播台:
package greedy;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
public class GreedyAlgorithm {
public static void main(String[] args) {
// 创建广播台
HashMap<String, HashSet<String>> broadcast = new HashMap<String, HashSet<String>>();
HashSet<String> hashset1 = new HashSet<String>();
hashset1.add("北京");
hashset1.add("上海");
hashset1.add("天津");
HashSet<String> hashset2 = new HashSet<String>();
hashset2.add("广州");
hashset2.add("上海");
hashset2.add("深圳");
HashSet<String> hashset3 = new HashSet<String>();
hashset3.add("成都");
hashset3.add("上海");
hashset3.add("杭州");
HashSet<String> hashset4 = new HashSet<String>();
hashset4.add("上海");
hashset4.add("天津");
HashSet<String> hashset5 = new HashSet<String>();
hashset5.add("杭州");
hashset5.add("大连");
broadcast.put("A", hashset1);
broadcast.put("B", hashset2);
broadcast.put("C", hashset3);
broadcast.put("D", hashset4);
broadcast.put("E", hashset5);
// 创建一个所有地区的
HashSet<String> allAreas = new HashSet<String>();
allAreas.add("北京");
allAreas.add("上海");
allAreas.add("天津");
allAreas.add("广州");
allAreas.add("深圳");
allAreas.add("成都");
allAreas.add("杭州");
allAreas.add("大连");
// 使用一个电台集合
ArrayList<String> selects = new ArrayList<String>();
// 临时变量,覆盖的地区和未覆盖地区的交集
HashSet<String> temp = new HashSet<String>();
// 定义一个在一次遍历过程中覆盖最多地区的广播台
String maxKey = null;
while (allAreas.size() != 0) {
// 遍历广播台
for (String key : broadcast.keySet()) {
temp.clear();
HashSet<String> areas = broadcast.get(key);
temp.addAll(areas);
// 取交集,之后交集再赋给temp
temp.retainAll(allAreas);
if (temp.size() > 0 && (maxKey == null || temp.size() > broadcast.get(maxKey).size())) {
maxKey = key;
}
}
if (maxKey != null) {
selects.add(maxKey);
allAreas.removeAll(broadcast.get(maxKey));
}
maxKey = null;
}
System.out.println("结果:" + selects);
}
}
查看结果: