Pytorch:修改模型的特定模块/层

def _set_module(model, submodule_key, module):
    tokens = submodule_key.split('.')
    sub_tokens = tokens[:-1]
    cur_mod = model
    for s in sub_tokens:
        cur_mod = getattr(cur_mod, s)
    setattr(cur_mod, tokens[-1], module)

参数如下
model:模型
submodule_key:模型名称
module:用来替换的新模块
示例, 把resnet18的所有Conv2d层的卷积核第一维尺寸设为1:

model = models.resnet18()
for name, module in model.named_modules():
    if isinstance(module, Conv2d):
        kernel_size = (1, module.kernel_size[1]) \
            if isinstance(module.kernel_size, tuple) \
            else (1, module.kernel_size)
        stride = (1, module.stride[1]) \
            if isinstance(module.stride, tuple) \
            else (1, module.stride)
        padding = (0, module.padding[1]) \
            if isinstance(module.padding, tuple) \
            else (1, module.padding)

        _set_module(model, name, Conv2d(module.in_channels, module.out_channels, kernel_size=kernel_size,
                                        stride=stride, padding=padding))

参考链接:https://zhuanlan.zhihu.com/p/356273702,侵删

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 在 PyTorch ,可以使用 `print()` 函数来输出模型的各个模块,以便更好地了解模型的结构和参数。一般可以使用以下代码来输出模型的各个模块。 ```python import torch import torchvision.models as models model = models.resnet18() print(model) ``` 输出结果如下: ``` ResNet( (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) (layer1): Sequential( (0): BasicBlock( (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (1): BasicBlock( (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (layer2): Sequential( (0): BasicBlock( (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (downsample): Sequential( (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (layer3): Sequential( (0): BasicBlock( (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (downsample): Sequential( (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (layer4): Sequential( (0): BasicBlock( (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (downsample): Sequential( (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (avgpool): AdaptiveAvgPool2d(output_size=(1, 1)) (fc): Linear(in_features=512, out_features=1000, bias=True) ) ``` 从输出结果可以看到,ResNet 模型有多个基本块(BasicBlock),每个基本块由多个卷积(Conv2d)和批归一化(BatchNorm2d)组成,其第一个基本块的输入通道数为 64,输出通道数为 64,后续基本块的输入通道数和输出通道数分别为 64,128,256,512。同时,模型还包含一个平均池化(AdaptiveAvgPool2d)和一个全连接(Linear)。 ### 回答2: 在PyTorch,输出模型的各个模块可以通过以下方法来实现: 1. 首先,我们需要导入所需的库和模型。一般情况下,我们会使用torchvision提供的预训练模型。 准备模型并加载预训练权重: ```python import torch import torchvision.models as models # 指定模型 model = models.resnet50(pretrained=True) # 加载预训练权重 model.load_state_dict(torch.load('resnet50.pth')) ``` 2. 接下来,我们可以通过打印模型的结构来输出模型的各个模块。 ```python # 打印模型结构 print(model) ``` 通过上述代码,我们可以看到模型的各个模块以及其顺序,包括卷积、全连接、池化等。 3. 如果我们只想输出某个特定模块的信息,我们可以通过以下代码实现: ```python # 打印某一层 print(model.layer1) ``` 上述代码会输出模型的layer1的相关信息。 总之,PyTorch提供了一种简单的方法来输出模型的各个模块。这对于我们理解和调试深度学习模型非常有帮助。 ### 回答3: 在Pytorch,我们可以通过使用`model.children()`方法来遍历和输出模型的每个模块。 首先,我们需要定义一个Pytorch模型,例如一个简单的神经网络模型: ```python import torch import torch.nn as nn class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1) self.relu = nn.ReLU() self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1) self.fc = nn.Linear(32 * 8 * 8, 10) def forward(self, x): x = self.conv1(x) x = self.relu(x) x = self.pool(x) x = self.conv2(x) x = self.relu(x) x = self.pool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x model = MyModel() ``` 然后,我们可以使用下面的代码输出模型的各个模块: ```python for name, module in model.named_children(): print(name, module) ``` 运行以上代码,输出结果如下: ``` conv1 Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) relu ReLU() pool MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) conv2 Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) fc Linear(in_features=2048, out_features=10, bias=True) ``` 可以看到,模型有5个模块:`conv1`、`relu`、`pool`、`conv2`和`fc`。每个模块的类型和参数信息都可以通过输出得到。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值