1、研究目的:量化多种影响因素对于某一种因变量的重要性(贡献)时,除了回归分析,主成分分析等常用的统计学方法外,机器学习算法的应用也同样能够量化影响因素的影响程度。
2、方法简介:
随机森林(Random Forest, RF)方法既是一种有监督的机器学习算法,也是一种集合算法,它构建并结合了多个决策树来创建一个 "森林”,以获得比单个树更准确和稳定的结果(Breiman,2001)。RF从训练集中抽取观察样本,用自举样本替换,在树状模型中随机选择一个特征子集,形成一个树状模型的集合,并通过投票(分类)或平均(回归)结合其结果(Flach,2012)。因此,RF可以减少单个树的过度拟合,减少树之间的相关性。在本研究中,RF被用于回归,并使用R语言中的软件包 randomForest(Liaw和Wiener,2002)实现。这个包包含许多可选的函数和参数,是基于Breiman(Breiman,2001)设计的,以实现RF算法。
3、参考文献
[1] Breiman L. Random forests[J]. Machine learning, 2001, 45: 5-32.
[2] Flach P. Machine learning: the art and science of algorithms that make sense of data[M]. Cambridge university press, 2012.
[3] Liaw A, Wiener M. Classification and regression