1.导入库包
import numpy as np
from numpy import newaxis
from numpy import pi
import matplotlib.pyplot as plt
from numpy import ogrid
2.生成矩阵
#生成数组(矩阵)
#用列表生成矩阵
a = np.array([[1,2,3],[4,5,6]]) #2*3
a = np.array([1,2,3]) #1*3
#用arange生成向量reshape生成矩阵
a = np.arange(15).reshape(3,5) #生成0开始递增的15个数,然后分成3行5列矩阵
a = np.arange(24).reshape(2,3,4) #生成2*3*4 3维数组
#np.set_printoptions(threshold='nan') #矩阵元素数量过多会自动省略显示,它可以取消省略显示
c = np.array([1,2,3])
c = np.arange(10,100,4) #10,14,18.....98;小数间隔也可
#线性生成向量
c = np.linspace(0,2,9) #生成0-2等间隔的9个数
c = np.ogrid[-100:100:3] #生成-100 - 100等间隔三个数
#生成特殊矩阵
c = np.zeros((4,4)) #生成4*4全0矩阵
c = np.ones((4,4),dtype=float) #生成4*4全1矩阵,浮点型
c = np.eye(2) #生成单位矩阵[[1,0],[0,1]]
c = np.empty((2,3)) #空矩阵,数值不好说
np.ones_like(a)
np.zeros_like(a)
c = np.random.random((2,3)) # √生成随机数矩阵,float
c = np.random.normal(mu,sigma,1000) #生成正态分布的1000个数据
3.矩阵操作
#矩阵的操作
print(np.sin(1))
a = np.ravel(a) # 去除空维度,(51,1)的array可以变为(51,)
a = np.mat(a) #上一步的反运算将a变为矩阵
b = np.floor(a) #矩阵a中没个元素去掉小数点后的数并保存为float格式
print(a.ndim) #指的是二维矩阵即m*n的矩阵(数组),亦称为秩(rank)
np.trace(a) #矩阵的迹,对角线上数之和
print(a.size) #矩阵所包含元素个数
print(a.shape) #矩阵所包含元素形状如(3,4)
print(a.reshape(2,-1)) #变形为2行,列数自动计算,a本身不变
a.resize(16,1) #a本身变形为16行1列,等于a.shape=16,-1
print(a.T) #矩阵的转置,1维向量并且没加入newaxis时失效
np.linalg.inv(a) #矩阵的逆矩阵,a*a-1 = 1
#print(a.data) #实际数组元素的缓冲区
4.矩阵计算
a = np.array([[1,0],[2,3]])
b = np.array([[2,4],[1,5]])
c = a*b #a和b对应位置相乘,与matlab中相反
c = a.dot(b) #等同于c = np.dot(a,b),倆矩阵相乘
a*=b;a+=b;a-=b #这种运算a,b必须同为整型或浮点型,而a+b(np.add(a,b))则可以int+float
np.sum([[0, 1], [0, 5]], axis=1) #横着加
c = a + b #增广计算,慎用a(4*1),b(1*4) c(4*4)
c = np.exp(1) #返回e(2.718)的a次方
c = a**2 #a的平方
c = a.sum(axis = 0 or 1) or a.max() or a.min #矩阵(0对应每列之和,1对应每行之和)的和,最大值与最小值
c = a.argmax(axis=0) #返回矩阵每列最大值对应索引号
a = np.arange(10)
a[0:6:2] = 100 #0,2,4位置数变成100
np.sort(a, axis = '-1', kind = 'quicksort') #排序,axis为对第几行排序
print(a[::-1]) #逆序排列
print(np.all([[True, False], [True, True]])) #与,返回False
print(np.any([[True, False], [True, True]])) #或
ax,bx,cx = np.ix_(a,b,c) #把a,b,c一维向量变成(x,1,1)(1,x,1)(1,1,x)维度方便他们相乘等
5.矩阵的合并拆分
def f(x,y):
return x+y
a = np.fromfunction(f,(3,4)) #生成3*4矩阵,每个位置值由x和y计算后得到
a[:,1:3] #返回矩阵a所有行,第2和3列
print(a[-1]) #返回a最后一行,等于a[-1,:]
b = [row for row in a] #row表示每一行,迭代输出每一行
b = [element for element in a.flat] #遍历输出矩阵每一个元素,类似b = a.ravel()
c = np.vstack((a,b)) #竖向合并a,b,等于np.row_stack((a,b))
c = np.hstack((a,b)) #横向合并a,b,等于np.column_stack((a,b))
c = np.hsplit(a,4) #矩阵a分成四等分1(列)|2|3|4
c = np.vsplit(a,4) #矩阵a分成四等分1(行)/2(行)/3/4
c = np.hsplit(a,(1,3)) #矩阵a的第2行和第三行一起被分出来
#r_与c_ 向量连接
np.r_[np.array([1,2,3]), 0, 0, np.array([4,5,6])] #r_用于连接行向量
np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])] #c_用于连接纵向量
6.深浅拷贝
b = a #b变化a跟着变化,简单赋值并没有复制数组。 b is a √
b = a.view() or a[:] #浅拷贝,b和a共享共同的值但是可以有不同的形状。 b is a ×,b.base is a √
b = a.copy() #深拷贝,b和a互相独立。b is a ×,b.base is a ×
7.数据的保存和读取
#np.save("a.npy", a) #括号内首先确定保存的文件名,再确认要保存的数据(单个)
#c = np.load( "a.npy" ) #读取数据
#np.savetxt("a.txt", a) #只能保存一个数组
#np.loadtxt("a.txt")
#np.savez("biubiu.npz",a,b,c)
#r = np.load("biubiu.npz") #读入时变量列表看不到,输入r["arr_0"]返回a,也可以import导入文件
8.矩阵元素的查找
np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3]) #二分查找输出-10等应该插入的位置
b=np.nonzero(a) #矩阵非0元素位置,二维矩阵a则返回两个向量对应横纵坐标
b=np.where(a>5) #矩阵中大于5的元素的位置
a = np.array([1,2,3,4])
b = np.array([True,False,True,False])
print(a[b])
print(a[a>2])