Tensor+Flow=TensorFlow
Tensor:张量,数据
Flow:流
深度学习中的数据是按照一定的方向流动的,流动的同时会进行相关的运算。
TensorFlow架构
前端:编程模型、构造计算图、Python、C++、Java
后端:运行计算图、C++
为什么选择TensorFlow?
高度的灵活性、真正的可移植性(底层采用C)、将科研和产品联系在一起、自动求微分、多语言支持、性能最优化、社区内容丰富。
TensorFlow基本概念介绍
Graph描述了计算过程(计算图,在前端完成),可以通过tensorboard图形化流程结构。
Spyder(Python 3.8)
# -*- coding: utf-8 -*-
"""
Spyder Editor
This is a temporary script file.
"""
import tensorflow.compat.v1 as tf
a=tf.constant(1,name='input_a');
b=tf.constant(2,name='input_b');
c=tf.multiply(a,b,name='maltiply_c');
d=tf.add(a,b,name='add_d');
e=tf.add(d,c,name='add_e');
sess=tf.Session();
sess.run(e);
writer=tf.summary.FileWriter('graph',sess.graph);