TensorFlow(笔记)

本文介绍了TensorFlow,一个深度学习框架,通过构建计算图来处理数据流,并展示了如何使用Python编程模型创建张量并执行基本操作。重点讲解了Session和TensorBoard在可视化流程中的应用。
摘要由CSDN通过智能技术生成

Tensor+Flow=TensorFlow
Tensor:张量,数据
Flow:流
深度学习中的数据是按照一定的方向流动的,流动的同时会进行相关的运算。

TensorFlow架构
前端:编程模型、构造计算图Python、C++、Java
后端:运行计算图、C++

为什么选择TensorFlow?
高度的灵活性、真正的可移植性(底层采用C)、将科研和产品联系在一起、自动求微分、多语言支持、性能最优化、社区内容丰富。

TensorFlow基本概念介绍
在这里插入图片描述
Graph描述了计算过程(计算图,在前端完成),可以通过tensorboard图形化流程结构。
计算图
Spyder(Python 3.8)

# -*- coding: utf-8 -*-
"""
Spyder Editor

This is a temporary script file.
"""

import tensorflow.compat.v1 as tf
a=tf.constant(1,name='input_a');
b=tf.constant(2,name='input_b');
c=tf.multiply(a,b,name='maltiply_c');
d=tf.add(a,b,name='add_d');
e=tf.add(d,c,name='add_e');
sess=tf.Session();
sess.run(e);
writer=tf.summary.FileWriter('graph',sess.graph);
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值