一、239. 滑动窗口最大值 - 力扣(LeetCode)
1.1题目
给你一个整数数组 nums
,有一个大小为 k
的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k
个数字。滑动窗口每次只向右移动一位。
返回 滑动窗口中的最大值 。
示例 1:
输入:nums = [1,3,-1,-3,5,3,6,7], k = 3 输出:[3,3,5,5,6,7] 解释: 滑动窗口的位置 最大值 --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7
示例 2:
输入:nums = [1], k = 1 输出:[1]
提示:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
1 <= k <= nums.length
1.2思路分析
定义一个单调递减队列,使得队列的顶端放置滑动窗口中的最大值。
首先先将前k个元素添加到队列中,添加时需要判断,当前添加到队列中的元素是否是的队列满足单调递减,若满足则添加,若不满足则将队列尾部的不满足条件的所有元素删除,再将该元素添加到队列中,添加完前k个元素后,我们还需要定义一个放置结果的数组,此时便可以向结果数组中放置第一个滑动窗口的最大元素了,接着定义循环,不断移除队列顶端的元素并向队列中添加元素,添加元素时仍需保证队列为单调递减队列,并且每执行一次循环还需要向我们的结果数组添加值。
1.3代码实现
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
if(nums.length == 1){
return nums;
}
int len = nums.length - k +1;
int [] res = new int[len];
int num = 0;
MyQueue myQueue = new MyQueue();
// 先将前k个元素放入到队列中
for(int i = 0 ; i<k; i++){
myQueue.add(nums[i]);
}
// for循环执行完后myQueue中的数值为 3、-1
res[num++] = myQueue.peek();
for(int i = k; i<nums.length;i++){
// 滑动窗口移除最前面的元素,移除是否判断该元素放入队列
myQueue.poll(nums[i-k]);
myQueue.add(nums[i]);
res[num++] = myQueue.peek();
}
return res;
}
}
// 定义队列
class MyQueue{
Deque<Integer> deque = new LinkedList<>();
// 弹出元素时,需要判断 弹出的数值是否等于队列出口的元素
public void poll(int val){
if(!deque.isEmpty() && deque.peek() == val){
deque.poll();
}
}
public void add(int val){
// 向队列中添加元素时,如果要添加的元素大于入口处的元素,则将入口处的元素弹出
while(!deque.isEmpty() && deque.getLast()<val){
deque.removeLast();
}
deque.add(val);
}
int peek(){
return deque.peek();
}
}
二、347. 前 K 个高频元素 - 力扣(LeetCode)
2.1题目
给你一个整数数组 nums
和一个整数 k
,请你返回其中出现频率前 k
高的元素。你可以按 任意顺序 返回答案。
示例 1:
输入: nums = [1,1,1,2,2,3], k = 2 输出: [1,2]
示例 2:
输入: nums = [1], k = 1 输出: [1]
提示:
1 <= nums.length <= 105
k
的取值范围是[1, 数组中不相同的元素的个数]
- 题目数据保证答案唯一,换句话说,数组中前
k
个高频元素的集合是唯一的
2.2思路分析
方法一使用哈希表
首先定义一个哈希表,哈希表的key为nums中出现的数值,可以对应的value为数值出现的频次,然后依据出现的频次对哈希表进行排序,最后返回需要的最多的k个值即可。
方法二小顶堆
2.3代码实现
方法一使用哈希表
class Solution {
public int[] topKFrequent(int[] nums, int k) {
// 暴力求解
// 定义一个hashmap hashmap中的key为数组中的元素,vale存放该元素出现的频次
HashMap<Integer,Integer> hashmap = new HashMap<>();
int [ ] result = new int[k];
for(int i = 0 ; i<nums.length; i++){
// 如果在 HashMap 中找到了以 nums[i] 为键的值,则取出该值;如果没有找到,则返回默认值 0。
hashmap.put(nums[i],hashmap.getOrDefault(nums[i],0)+1);
}
// 对value进行排序之所以将其转换为list数据类型是为了调用接口文件
ArrayList<HashMap.Entry<Integer, Integer>> list = new ArrayList(hashmap.entrySet());
// 每个entry存放的是一个键值对
// HashMap.Entry<Integer, Integer>是Java中HashMap类的静态内部接口,用于表示HashMap中的键值对条目
Collections.sort(list,(a,b)->{
return b.getValue()-a.getValue();
});
for (int i = 0 ;i <k; i++){
result[i] = list.get(i).getKey();
}
return result;
}
}
方法二小顶堆
class Solution {
public int[] topKFrequent(int[] nums, int k) {
// 暴力求解
// 定义一个hashmap hashmap中的key为数组中的元素,vale存放该元素出现的频次
HashMap<Integer,Integer> hashmap = new HashMap<>();
for(int i = 0 ; i<nums.length; i++){
// 如果在 HashMap 中找到了以 nums[i] 为键的值,则取出该值;如果没有找到,则返回默认值 0。
hashmap.put(nums[i],hashmap.getOrDefault(nums[i],0)+1);
}
// 对value进行排序之所以将其转换为list数据类型是为了调用接
PriorityQueue<int []> pq = new PriorityQueue<>((pair1,pair2)->pair1[1]-pair2[1]);
for(Map.Entry<Integer,Integer> entry:hashmap.entrySet()){
if(pq.size()<k){
pq.add(new int [] {entry.getKey(),entry.getValue()});
}else{
if(entry.getValue()>pq.peek()[1]){
pq.poll();
pq.add(new int[] {entry.getKey(),entry.getValue()});
}
}
}
int [] ans = new int[k];
for(int i = k-1; i>= 0 ;i--){
ans[i] = pq.poll()[0];
}
return ans;
}
}