【13,14代CPU】CPU电压,到底是CPU-Z准还是AIDA64?Ubuntu下怎么查看CPU电压

下载图吧工具箱之后打开CPU-Z(64位)

在这里插入图片描述
显示核心电压1.346v,刚开始看到这个心里还是慌的一批的
但是也懒得用万用表上主板测,于是再用AIDA64看看,也在图吧工具箱CPU工具里有
在这里插入图片描述
右键桌面右下角AIDA64图标,选择显示屏显面板。

在这里插入图片描述
然后再次右键选择设置
在这里插入图片描述
在这里插入图片描述
然后可以看到CPU核心电压为1.198,差了很多
到底哪个是准的呢
还可以下载一个HWiNFO64
在这里插入图片描述
点击传感器
往下翻,找到主板
在这里插入图片描述
这个就是CPU核心电压

我实测CinebenchR23烤CPU电压稳定在1.2v左右,温度78度左右
单核CPU电压也差不多,温度更低,60几度,感觉没必要调整了。
我就是按照少数服从多数,HWiNFO64与AIDA64的数据比较接近,所以就不继续调电压啦,懒得折腾了。如果还是不放心,可以上万用表实测。

Ubuntu系统下怎么查看CPU电压数据呢

sudo apt-get install i7z
sudo i7z

在这里插入图片描述

对如下内容,按实际进行整理: 显卡检测方案 一、基础参数验证 1. 核心参数监测 • GPU-Z + HWiNFO联动:同步记录核心频率波动(允许±5%偏差)、显存带宽实际值(对比理论值的误差≤3%)、供电电压稳定性(12V输入波动≤±0.2V)。 • 显存颗粒验证:通过GPU-Z的Advanced选项卡读取显存厂商码(如三星K4Z80325BC、美光D8BWW),结合HWiNFO的SPD信息核对颗粒规格。 • 功耗曲线分析:使用AIDA64的GPGPU测试模块,记录TDP从10%到100%负载下的功耗斜率,验证供电模块响应速度(目标:满载时MOSFET温度≤95℃)。 2. PCB兼容性验证 • 尺寸匹配性:依据GPU-Z读取的显卡长度/厚度数据(如328×140×62mm),在机箱内模拟安装,验证: o 后部与电源仓间距≥20mm(避免线材挤压) o 顶部与CPU散热器间距≥15mm(兼容塔式风冷) • 结构强度测试:施加50N垂直压力于散热器末端,检测PCB弯曲度(允许≤0.3mm变形),同时用Flir热成像仪监测焊点应力集中区域温度变化。 二、系统兼容性与软件适配 1. 多系统驱动验证 • Win10/Win11双环境测试:通过驱动人生部署NVIDIA Studio驱动(版本≥551.23)和Adrenalin Edition(版本≥23.12.1),验证: o AutoCAD 2025的RealView渲染模式帧率稳定性(≥45fps) o SolidWorks Simulation的GPU加速效率(对比纯CPU运算提速≥2.8倍) • 专业软件兼容性: o Rhino 8的Cycles渲染器显存占用率监测(需≤显存容量的80%) o ANSYS Mechanical的CUDA内核利用率(目标≥92%) 2. 多屏输出稳定性 • DP 2.1 + HDMI 2.1双4K@144Hz输出:使用MST Hub连接双屏,持续运行Superposition 8K基测试,监测: o 接口供电波动(±5%以内) o 信号干扰导致的帧率波动(标差≤2fps) 三、信号完整性与热力学分析 1. PCB工程验证 • HyperLynx信号分析: o PCIe 5.0通道的眼图测试(眼高≥120mV,眼宽≥0.3UI) o 显存布线阻抗匹配(目标:差分阻抗100Ω±5%) • ANSYS SIwave仿真: o 高频纹波抑制(12V输入端的峰峰值≤50mV) o VRM相位间的电流均衡度(差异≤8%) 2. 散热系统匹配性 • Flotherm风道优化: o 在机箱内建立3D模型,模拟前进后出/下进上出风道效率,要求:  核心区域温差≤8℃  显存散热片风速≥2.5m/s • 热应力测试: o 运行FurMark 4K烤机30分钟,使用热成像仪检测:  GDDR6X显存温度≤98℃(符合JEDEC标)  热管与鳍片接触面的温差≤5℃ 四、极限负载与稳定性验证 1. 压力测试组合 • 3DMark Time Spy Extreme循环:连续运行5次,要求: o 图形分数波动≤1.5% o 最高温度与首次测试差值≤3℃ • Unigine Superposition 8K优化测试:监测复杂光影场景下的帧生成时间(99%帧时间≤28ms) 2. 机械振动模拟 • 使用ISTA MES振动台(频率5-500Hz,加速度3Grms),验证: o PCIe金手指接触阻抗变化≤5% o 散热器螺丝预紧力衰减率≤8% 五、智能化检测技术应用 1. 自动化脚本开发 • 基于Python+PyVISA编写控制脚本,实现: o Keysight示波器自动捕获供电波形 o 热成像数据与HWiNFO日志时间戳对齐 • 使用LabVIEW开发PCIe误码率测试系统(BER≤1E-12) 2. 长期可靠性预测 • 参考MIL-HDBK-217F标,结合Arrhenius模型计算: o 电容组在45℃环境下的MTBF≥10万小时 o 风扇轴承在3000RPM下的寿命≥5年 执行建议 • 故障预判设计:在PCB测试点预留JTAG接口,通过Xilinx ChipScope监测关键信号 • 数据可视化:使用MATLAB生成3D热分布图与信号频谱瀑布图 • 对比基:建立同架构显卡(如RTX 4090 vs RX 7900 XTX)的跨平台性能数据库 检测报告需包含动态参数曲线(如频率-温度-功耗三维关系图)及关键指标的6σ分析。如需特定测试参数模板或脚本码片段,可提供详细需求进一步定制。
03-31
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MobiCetus

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值