定义
博弈论主要研究公式化了的激励结构间的相互作用,是研究具有斗争或竞争性质现象的数学理论和方法。博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。如囚徒困境(链接)。
在算法竞赛中出现的博弈论题目通常是ICG(公平组合游戏)的,有如下特征:
1.有两名选手。
2.两名选手交替操作,每次一步,每步都是在有限的合法集合中选取一种进行。
3.在任何情况下,合法操作只取决于情况本身,与选手无关。
4.游戏的败北条件为:当某位选手需要进行操作时,当前没有任何可以执行的合法操作,则该选手败北。
寻找必败态即为针对此类试题给出一种解题思路。
巴什博弈
一堆n个物品,两个人轮流从中取出(1~m)个,最后取光者胜,如何判断先手赢还是后手赢。
显然,如果n=m+1,那么由于一次最多只能取m个,所以无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后取者胜。所以当一方面对的局势是n%(m+1)=0时,其面临的是必败的局势 。由此我们可以得到取胜的法则:如果n=(m+1)*r+s,(r 为任意自然数,s≤m),那么先取者要拿走s 个物品,如果后取者拿走k(k≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)*(r-1)个,以后保持这样的取法,那么先取者肯定获胜。总之,要保证给对手留下(m+1)的倍数,就能最后获胜。
例题1:
一天,TT在寝室闲着无聊,和同寝的人玩起了取石子游戏,而由于条件有限,他们是用旺仔小馒头当作石子。游戏的规则是这样的。设有一堆石子,数量为N(1<=N<=1000000),两个人轮番取出其中的若干个,每次最多取M个(1<=M<=1000000),最先把石子取完者胜利。我们知道,TT和他的室友都十分的聪明,那么如果是TT先取,他会取得游戏的胜利么?
输入
第一行是一个正整数n表示有n组测试数据
输入有不到1000组数据,每组数据一行,有两个数N和M,之间用空格分隔。
输出
对于每组数据,输出一行。如果先取的TT可以赢得游戏,则输出“Win”,否则输出“Lose”(引号不用输出)
题解:
#include <stdio.h>
#include <stdlib.h>
int main()
{
int m, n, group;
scanf("%d", &group);
while (group--)
{
scanf("%d%d", &n, &m);
if (n % (m + 1) == 0)
printf("Lose\n");
else
printf("Win\n");
}
system("pause");
return 0;
}
例题2:
Lele听说街上正在举行一场别开生面的拍卖会,拍卖的物品正好就是一块20亩的田地。于是,Lele带上他的全部积蓄,冲往拍卖会。后来发现,整个拍卖会只有Lele和他的死对头Yueyue。通过打听,Lele知道这场拍卖的规则是这样的:刚开始底价为0,两个人轮流开始加价,不过每次加价的幅度要在1~N之间,当价格大于或等于田地的成本价 M 时,主办方就把这块田地卖给这次叫价的人。Lele和Yueyue虽然考试不行,但是对拍卖却十分精通,而且他们两个人都十分想得到这块田地。所以他们每次都是选对自己最有利的方式进行加价。由于Lele字典序比Yueyue靠前,所以每次都是由Lele先开始加价,请问,第一次加价的时候,Lele要出多少才能保证自己买得到这块地呢?
输入:
本题目包含多组测试,请处理到文件结束(EOF)。每组测试占一行。每组测试包含两个整数M和N(含义见题目描述,0<N,M<1100)
输出:
对于每组数据,在一行里按递增的顺序输出Lele第一次可以加的价。两个数据之间用空格隔开。如果Lele在第一次无论如何出价都无法买到这块土地,就输出"none"。
Sample Input
4 2
3 2
3 5
Sample Output
1
none
3 4 5
题解:
只要加价让剩余价格是(n+1)的倍数,就可以到达必败点。
如果m是(n+1)的倍数,Lele输
如果m大于等于n,Lele赢
如果m不是(n+1)的倍数,那么加价m%(1+n)),lele就可以赢
#include <stdio.h>
#include <stdlib.h>
int main()
{
int m, n;
while (scanf("%d%d", &m, &n) != EOF)
{
if (m % (n + 1) == 0)
{
printf("none\n");
}
else
{
if (n >= m)
{
for (int i = m; i <= n; ++i)
{
printf(i == m ? "%d" : " %d", i);
}
printf("\n");
}
else
{
printf("%d\n", m % (n + 1));
}
}
}
system("pause");
return 0;
}
减法博弈
巴什博弈有一种变形,叫做减法博弈。用s表示一个正整数构成的集合,基于S所定义的减法游戏可以描述如下:
有一个由n个石子组成的石子堆,两名玩家轮流从中拿走石子,每次拿走石子的个数只能是集合S中的数。拿走最后一枚石子的玩家获胜。
例:S = {1, 3, 4},如果在游戏的开始有100枚石子,判断先手的输赢
题解:
可以通过由小到大找规律,找出N和P来确定100是必败态还是必胜态。
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
状态 | P | N | P | N | N | N | N | P | N | P | N | N | N |
通过观察发现,该游戏中的P位置(必败态)是那些能被7整除或者模7余2的位置,其他位置都是N位置(必胜态)。
//减法博弈
int main()
{
int m;
while (scanf("%d", &m) != EOF)
{
if (m % 7 == 0 || m % 7 == 2)
printf("Lose\n");
else
printf("Win\n");
}
system("pause");
return 0;
}
威佐夫博弈
有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
解决思路:A:设(ai,bi)(ai ≤bi ,i=0,1,2,…,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。
分析:
-
第0个(0 , 0),先手输,当游戏某一方面对( 0 , 0)时,他没有办法取了,那么肯定是在上一局取完了,那么先手输。
-
第1个 ( 1 , 2 ),先手输,先手只有四种取法,
1)取 1 中的一个,那么后手取第二堆中两个。
2)取 2 中一个,那么后手在两堆中各取一个。
3)在 2 中取两个,那么后手在第一堆中取一个。
4)两堆中各取一个,那么后手在第二堆中取一个。
可以看出,不论先手怎么取,后手总是能赢。所以先手必输! -
第2个 ( 3 , 5 ),先手必输。首先先手必定不能把任意一堆取完,如果取完了很明显后手取完另一堆先手必输,那么假如看取一堆的情况,假设先手先在第一堆中取。 取 1 个,后手第二堆中取4个,变成(1 ,2)了,上面分析了是先手的必输局。取 2 个,后手第二堆中取3个,也变成( 1 , 2)局面了。
假设先手在第二堆中取,取 1 个,那么后手在两堆中各取 2 个,也变成 ( 1 , 2 )局面了。取 2 个 ,那么后手可以两堆中都去三个, 变成 ( 0 , 0)局面,上面分析其必输。取 3 个,后手两堆各取 1 个 ,变成( 1 , 2)局面了。取 4 个,后手在第一堆中取一个,变成( 1 , 2)局面了。可见不论先手怎么取,其必输!
-
第3个(4 , 7),先手必输。
-
自己推理可以发现不论第一次先手如何取,那么后手总是会变成前面分析过的先手的必输局面。
那么到底有什么规律呢,我们继续往下写。
第4个 ( 6 ,10 )
第5个 ( 8 ,13)
第6个 ( 9 , 15)
第7个 ( 11 ,18)
会发现他们的差值是递增的,为 0 , 1 , 2, 3, 4 , 5 , 6, 7…n
而用数学方法分析发现局面中第一个值为前面局面中没有出现过的第一个值,比如第三个局面,前面出现了 0 1 2,那么第三个局面的第一个值为 3 ,比如第五个局面,前面出现了 0 1 2 3 4 5 ,那么第五个局面第一个值为6。再找规律的话我们会发现,第一个值 = 差值 * 1.618 再取整,而1.618 = (sqrt(5)+ 1)/ 2 。大家都知道0.618是黄金分割率。而威佐夫博弈正好是1.618,这就是博弈的奇妙之处!
那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?
我们总结了如下公式:ak =[k(1+√5)/2],bk= ak + k (k=0,1,2,…,n 方括号表示取整函数)
威佐夫博弈常见的问题:
-
给你一个局面,让你求先手的输赢。
有了上面的分析,那么这个问题应该不难解决。首先求出差值,差值 * 1.618 == 最小值 的话后手赢,否则先手赢。(注意这里的1.618最好是用上面式子计算出来的,否则精度要求高的题目会错) -
给你一个局面,让你求先手的输赢,假设先手赢的话输出他第一次的取法。
首先讨论在两边同时取的情况,很明显两边同时取的话,不论怎样取他的差值是不会变的,那么我们可以根据差值计算出其中的小的值,然后加上差值就是大的一个值,当然能取的条件是求出的最小的值不能大于其中小的一堆的石子数目。
假如在一堆中取的话,可以取任意一堆,那么其差值也是不定的,但是我们可以枚举差值,差值范围是0 — 大的石子数目,然后根据上面的理论判断满足条件的话就是一种合理的取法。
例题:
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。
Sample Input
2 1
8 4
4 7
Sample output:(如果最后你是胜者,则为1,反之,则为0)
0
1
0
题解:
注意要保证前一个数字比第二个数字小
#include <stdio.h>
#include <math.h>
int main(){
int a,b,temp;
double q;
while(scanf("%d %d",&a,&b)){
if(a>b){
//交换位置
temp = a;
a = b;
b = temp;
}
q = (1+sqrt(5))/2;
if(int((b-a)*q)== a)
printf("0\n");
else
printf("1\n");
}
return 0;
}