博弈算法

博弈算法

几种无法用常见博弈树解答的题型,寻找必败态。

1.巴什博弈

  1. 问题模型: 有一个堆物品,物品数量为n个,两个人轮流从这堆物品中取物品,规定每次至少取一个,最多取m个,最后取光者得胜。
  2. 解决思路: 当n=m+1时,无论先手者取多少个,后手者都能一次性取完剩下的,即先手必败。故可推得当面对n%(m+1)=0时,先手必败。当面对n=r*(m+1)+s时,先手取s,后手者取一定量设为a,先手者再取(m+1)-a,···,每次先手者取完后手者的m+1中剩余量,使后手者始终面对n%(m+1)=0的必败态,先手必胜。
  3. 结论:必败态为n%(m+1)=0
#include<stdio.h>
int main()
{
   int T;
   scanf("%d",&T);
   while(T--)
   {
      int n,m;
      scanf("%d%d",&n,&m);
      if(n%(m+1)==0)
          printf("second win\n");
      else
          printf("first win\n");
   }
   return 0;
}

2.威佐夫博弈

  1. 问题模型:有两堆各若干个物品,两个人轮流从某一堆同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
  2. 解决思路: 设(ai,bi) (ai ≤bi , n ∈ N n\in\mathbb N nN)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)。任给一个局势(a,b),如下公式判断它是不是奇异局势:ak= [ k ∗ ( 1 + 5 ) 2 ] [\frac{k*(1+\sqrt{5})}{2}] [2k(1+5 )],bk=ak+k ( n ∈ N n\in\mathbb N nN,方括号表示取整函数)。
  3. 满足上公式的局势性质:
    (1)任何自然数都包含在一个且仅有一个奇异局势中。
    假设ak是未在前面出现过的最小自然数,所以有ak>ak-1,而bk=ak+k>ak-1+k-1=bk-1>ak-1,故成立。
    (2)任意操作都可将奇异局势变为非奇异局势。
    若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其他奇异局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势
    (3)采用适当的方法,可以将非奇异局势变为奇异局势。
    假设面对的局势是(a,b),若 b = a,则同时从两堆中取走 a 个物体,就变为了奇异局势(0,0);如果a = ak ,b > bk,那么,取走b – bk个物体,即变为奇异局势;如果 a = ak,b < bk ,则同时从两堆中拿走 ak – ab – ak个物体,变为奇异局势( ab – ak , ab – ak+ b – ak);如果a > ak,b= ak + k,则从第一堆中拿走多余的数量a – ak 即可;如果a < ak ,b= ak + k,分两种情况,第一种,a=aj,(j < k),从第二堆里面拿走 b – bj 即可; 第二种,a=bj ,(j<k),从第二堆里面拿走 b – aj 即可。
  4. 结论: 两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。
#include<stdio.h>
#include<math.h>
#include<algorithm>
using namespace std;
int main()
{
    int a,b;
    while(~scanf("%d%d",&a,&b))
    {
        if(a>b)
            swap(a,b);
        int ans=floor((b-a)*(sqrt(5)+1)/2); //判断是否是奇异局势
        if(a==ans)
            printf("second win\n");
        else
            printf("first win\n");
    }
    return 0;
}

3.斐波那契博弈

  1. 问题模型: 有一堆个数为n的石子,游戏双方轮流取石子,满足:

    (1)先手不能在第一次把所有的石子取完;

    (2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍)。 约定取走最后一个石子的人为赢家。

  2. 解决思路:
    当n为斐波那契数时,先手必败。
    证明:
    根据“Zeckendorf定理”(齐肯多夫定理):任何非斐波那契正整数可以表示为若干个不连续的Fibonacci数之和。
    假设共83个,n=83=55+21+5+2,先手者取2个,后手者无法取到5个,只能取a个(a<5),先手者再取 5-a 个,同理,后手者再取b个,先手者再取21-b个,最终必然是先手者取完。

  3. 结论: 面对斐波那契数者必败。

#include<stdio.h>
#include<math.h>
#include<algorithm>
using namespace std;
int main()
{
    int a,b;
    while(~scanf("%d%d",&a,&b))
    {
        if(a>b)
            swap(a,b);
        int ans=floor((b-a)*(sqrt(5)+1)/2); //判断是否是奇异局势
        if(a==ans)
            printf("second win\n");
        else
            printf("first win\n");
    }
    return 0;
}

尼姆博弈

  1. 问题模型: 有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

  2. 解决思路: 用(a,b,c)表示某种局势,显证(0,0,0)是第一种奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。
    (a,b,c)是必败态等价于a⊕b⊕c=0

    证明:
    (1)任何从p(a,b,c)=0局面出发的任意局面(a,b,c’);一定有p(a,b,c’)不等于0。否则可以得到c=c’。
    (2)任何p(a,b,c)不等于0的局面都可以走向 p(a,b,c)=0的局面。
    (3)对于 (4,9,13) 这个容易验证是奇异局势。
    在这里插入图片描述
    其中有两个8,两个4,两个1,非零项成对出现,这就是尼姆和为 零的本质。别人要是拿掉13里的8或者1,那你就拿掉对应的9 中的那个8或者1;别人要是拿掉13里的4,你就拿掉4里的4;别人如果拿掉13里的3,就把10作分解,然后想办法满 足非零项成对即可。

  3. 推广一:如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设 a < b< c,我们只要将 c 变为 a^b,即可,因为有如下的运算结果: a⊕b⊕(a⊕b)=(a⊕a)⊕(b⊕b)=0⊕0=0。要将c 变为a⊕b,只从 c中减去 c-(a⊕b)

  4. 推广二:当石子堆数为n堆时,则推广为当对每堆的数目进行亦或之后值为零是必败态。

#include<stdio.h>
#include<math.h>
#include<algorithm>
using namespace std;
int main()
{
    int a,b;
    while(~scanf("%d%d",&a,&b))
    {
        if(a>b)
            swap(a,b);
        int ans=floor((b-a)*(sqrt(5)+1)/2); //判断是否是奇异局势
        if(a==ans)
            printf("second win\n");
        else
            printf("first win\n");
    }
    return 0;
}
  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Matlab博弈算法是指使用Matlab编程语言实现的博弈算法博弈论是一种研究冲突和合作行为的数学工具,用于解决决策者在相互作用中做出决策的问题。在博弈论中,A和B两个决策者通过采取不同的行动来影响彼此,并通过反复博弈最终达到一个动态平衡。Matlab提供了强大的工具和函数来实现各种博弈算法。 关于Matlab博弈算法的具体内容,可以参考博主的简介。博主擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真。如果你有相关的Matlab代码问题,可以与博主私信交流。此外,引用提到了无线通信系统中经典的功率控制博弈算法的Matlab实现,这也是Matlab博弈算法的一个应用示例。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [【混沌博弈优化算法】基于混沌博弈优化算法求解单目标优化问题(CGO)含Matlab源码](https://blog.csdn.net/qq_59747472/article/details/123760193)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [无线通信系统中功率控制博弈算法的 MATLAB 实现](https://download.csdn.net/download/weixin_43870101/12460593)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [博弈论 —— matlab](https://blog.csdn.net/qq_25990967/article/details/122908868)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值