kruskal算法----最小生成树

kruskal算法

这个算法可以归结为贪心算法,将图的边集进行排序,每次取最小的那个边,最后构造出一颗最小生成树。
具体步骤是:
1、边集排序:sort()函数就可以----复杂度为O(n*logn)
2、循环取最小的边,判断这条边加入之后,和先前加入的边是否会构成圈,不会就加入。
3、循环截止到取出n-1条边。

问题就变为如何判断这条边加进去之后,是否还会构成圈。这就应用到并查集的知识。如果边的两个顶点在同一个集合上,那就表示会构成圈。 并查集

	sort(eg,eg+coun);
	int ans=0,cnt=0;
	for(int i=0;i<coun;i++)
	{
		if(unite(eg[i].u,eg[i].v))
		{
			ans+=eg[i].w;
			cnt++;
			if(cnt==n) return ans;
		}
	}

具体问题:

东东在老家农村无聊,想种田。农田有 n 块,编号从 1~n。种田要灌溉
众所周知东东是一个魔法师,他可以消耗一定的 MP 在一块田上施展魔法,使得黄河之水天上来。他也可以消耗一定的 MP 在两块田的渠上建立传送门,使得这块田引用那块有水的田的水。 (1<=n<=3e2)
黄河之水天上来的消耗是 Wi,i 是农田编号 (1<=Wi<=1e5)
建立传送门的消耗是 Pij,i、j 是农田编号 (1<= Pij <=1e5, Pij = Pji, Pii =0)
东东为所有的田灌溉的最小消耗

分析
这个题目其实就是求最小生成树的问题,不过这里的点集是1-n,还有一个需要添加的就是天上的水,所以必须要加入一个天上这个点0。
如果n=3,那么这个图就是:
在这里插入图片描述

全部代码:

#include<stdio.h>
#include<algorithm>
using namespace std;
int coun,n=0;
struct edge
{
	int u,v,w;
	bool operator<(const edge &e) const
	{
		return w<e.w;
	}
}eg[90003];
int pa[30002];
void init(int n)
{
	for(int i=0;i<n;i++)
	{
		pa[i]=i;
	}
}
int find(int x)
{
	return pa[x]==x ? x: pa[x]=find(pa[x]);//路径压缩
}
bool unite(int x,int y)
{
	x=find(x);y=find(y);
	if(x==y) return false;//同一个并查集里面,不需要合并了
	pa[x]=y;
	return true;
}
int kruskal()
{
	init(n+1);
	sort(eg,eg+coun);
	int ans=0,cnt=0;
	for(int i=0;i<coun;i++)
	{
		if(unite(eg[i].u,eg[i].v))
		{
			ans+=eg[i].w;
			cnt++;
			if(cnt==n) return ans;
		}
	}
	return -1;
}

int main()
{
	scanf("%d",&n);//n块田
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&eg[coun].w);eg[coun].u=0;eg[coun].v=i;
		coun++;
	}
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
		{
			scanf("%d",&eg[coun].w);
			if(i==j) continue;
			eg[coun].u=i;eg[coun].v=j;coun++;
		}
	}
	int ans=kruskal();
	printf("%d",ans);
	return 0;
}

第二个题目:

在这里插入图片描述
分析
要得到最优的树结构,其实也就是一个最小生成树问题,然后要找到最优树结构的最长耗时,也就是最小生成树里面边权最大的边。

#include<stdio.h>
#include<algorithm>
using namespace std;
int coun,n,m,root;
struct edge
{
	int u,v,w;
	bool operator<(const edge &e) const
	{
		return w<e.w;
	}
}eg[100010];
int pa[50002];
void init(int n)
{
	for(int i=0;i<n;i++)
	{
		pa[i]=i;
	}
}
int find(int x)
{
	return pa[x]==x ? x: pa[x]=find(pa[x]);//路径压缩
}
bool unite(int x,int y)
{
	x=find(x);y=find(y);
	if(x==y) return false;//同一个并查集里面,不需要合并了
	pa[x]=y;
	return true;
}
int kruskal()
{
	init(n);
	sort(eg,eg+coun);
	int ans=0,cnt=0;
	for(int i=0;i<coun;i++)
	{
		if(unite(eg[i].u,eg[i].v))
		{
			if(ans<eg[i].w)
				ans=eg[i].w;
			cnt++;
			if(cnt==n-1) return ans;
		}
	}
	return -1;
}

int main()
{
	scanf("%d",&n);scanf("%d",&m);scanf("%d",&root);
 	for(int i=1;i<=m;i++)
	{
		scanf("%d %d %d",&eg[coun].u,&eg[coun].v,&eg[coun].w);
		coun++;
	}
	int ans=kruskal();
	printf("%d",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值