kruskal算法
这个算法可以归结为贪心算法,将图的边集进行排序,每次取最小的那个边,最后构造出一颗最小生成树。
具体步骤是:
1、边集排序:sort()函数就可以----复杂度为O(n*logn)
2、循环取最小的边,判断这条边加入之后,和先前加入的边是否会构成圈,不会就加入。
3、循环截止到取出n-1条边。
问题就变为如何判断这条边加进去之后,是否还会构成圈。这就应用到并查集的知识。如果边的两个顶点在同一个集合上,那就表示会构成圈。 并查集
sort(eg,eg+coun);
int ans=0,cnt=0;
for(int i=0;i<coun;i++)
{
if(unite(eg[i].u,eg[i].v))
{
ans+=eg[i].w;
cnt++;
if(cnt==n) return ans;
}
}
具体问题:
东东在老家农村无聊,想种田。农田有 n 块,编号从 1~n。种田要灌溉
众所周知东东是一个魔法师,他可以消耗一定的 MP 在一块田上施展魔法,使得黄河之水天上来。他也可以消耗一定的 MP 在两块田的渠上建立传送门,使得这块田引用那块有水的田的水。 (1<=n<=3e2)
黄河之水天上来的消耗是 Wi,i 是农田编号 (1<=Wi<=1e5)
建立传送门的消耗是 Pij,i、j 是农田编号 (1<= Pij <=1e5, Pij = Pji, Pii =0)
东东为所有的田灌溉的最小消耗
分析
这个题目其实就是求最小生成树的问题,不过这里的点集是1-n,还有一个需要添加的就是天上的水,所以必须要加入一个天上这个点0。
如果n=3,那么这个图就是:
全部代码:
#include<stdio.h>
#include<algorithm>
using namespace std;
int coun,n=0;
struct edge
{
int u,v,w;
bool operator<(const edge &e) const
{
return w<e.w;
}
}eg[90003];
int pa[30002];
void init(int n)
{
for(int i=0;i<n;i++)
{
pa[i]=i;
}
}
int find(int x)
{
return pa[x]==x ? x: pa[x]=find(pa[x]);//路径压缩
}
bool unite(int x,int y)
{
x=find(x);y=find(y);
if(x==y) return false;//同一个并查集里面,不需要合并了
pa[x]=y;
return true;
}
int kruskal()
{
init(n+1);
sort(eg,eg+coun);
int ans=0,cnt=0;
for(int i=0;i<coun;i++)
{
if(unite(eg[i].u,eg[i].v))
{
ans+=eg[i].w;
cnt++;
if(cnt==n) return ans;
}
}
return -1;
}
int main()
{
scanf("%d",&n);//n块田
for(int i=1;i<=n;i++)
{
scanf("%d",&eg[coun].w);eg[coun].u=0;eg[coun].v=i;
coun++;
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
scanf("%d",&eg[coun].w);
if(i==j) continue;
eg[coun].u=i;eg[coun].v=j;coun++;
}
}
int ans=kruskal();
printf("%d",ans);
return 0;
}
第二个题目:
分析
要得到最优的树结构,其实也就是一个最小生成树问题,然后要找到最优树结构的最长耗时,也就是最小生成树里面边权最大的边。
#include<stdio.h>
#include<algorithm>
using namespace std;
int coun,n,m,root;
struct edge
{
int u,v,w;
bool operator<(const edge &e) const
{
return w<e.w;
}
}eg[100010];
int pa[50002];
void init(int n)
{
for(int i=0;i<n;i++)
{
pa[i]=i;
}
}
int find(int x)
{
return pa[x]==x ? x: pa[x]=find(pa[x]);//路径压缩
}
bool unite(int x,int y)
{
x=find(x);y=find(y);
if(x==y) return false;//同一个并查集里面,不需要合并了
pa[x]=y;
return true;
}
int kruskal()
{
init(n);
sort(eg,eg+coun);
int ans=0,cnt=0;
for(int i=0;i<coun;i++)
{
if(unite(eg[i].u,eg[i].v))
{
if(ans<eg[i].w)
ans=eg[i].w;
cnt++;
if(cnt==n-1) return ans;
}
}
return -1;
}
int main()
{
scanf("%d",&n);scanf("%d",&m);scanf("%d",&root);
for(int i=1;i<=m;i++)
{
scanf("%d %d %d",&eg[coun].u,&eg[coun].v,&eg[coun].w);
coun++;
}
int ans=kruskal();
printf("%d",ans);
return 0;
}