AI 内容分享(二十五):生成式人工智能与未来教育形态重塑

本文介绍了生成式人工智能的发展现状、内涵特征,以星火大模型为例阐述国产大语言模型核心能力与教育应用场景。还探讨其助力教育变革,如转变主体关系、升级教育环境等。同时指出国产化进程中教育领域面临的机遇与挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、引   言

二、生成式人工智能的发展现状及特征

  (一)生成式人工智能的新发展

  (二)生成式人工智能的内涵及技术框架

  (三)以大语言模型为代表的生成式人工智能主要特征

三、国产大语言模型的核心能力及其典型教育应用场景

  (一)核心技术能力

  (二)教育领域的典型应用场景

四、生成式人工智能助力重塑未来教育形态

  (一)推动人机协同走向人机共生,促进教育主体关系转变

  (二)加快研发教育专有大模型,智能升级信息化教育环境

  (三)赋能生成式教学资源供给,创新优质资源个性化配置

  (四)重塑智能化教与学方式,增强师生有效教学新动能

  (五)强化素养导向评价理念,深化多元协作评价方式

  (六)统筹智能教育应用创新,推动人工智能向善发展

五、结   语


一、引   言

      当前,不断更迭的智能技术正在加速教育的数字转型与智能升级,变革和重塑未来教育形态。尤其是以ChatGPT、GPT-4等为代表的生成式人工智能技术(Generative AI,GAI或GenAI)具备了通用人工智能(Artificial General Intelligence,AGI)的特征[1-2],正推动着互联网资源生产方式转向人工智能生成内容(AI Generated Content,AIGC)范式[3],使得人工智能在数字化实践中的作用更为凸显。国内一批高科技企业和机构也聚焦生成式人工智能领域,组建强大技术团队加快研发攻关,在国产大语言模型技术和产品等方面取得突破,并在教育等领域推广应用。首批11家国产大语言模型已经通过国家监管部门备案[4],由科大讯飞公司自主研发的星火认知大模型(简称“星火大模型”)于2023年9月5日起正式向全民开放使用,并被MIT科技评论等机构评为“最聪明”的国产大语言模型[5]。生成式人工智能的文本生成、语言理解、知识问答、逻辑推理等方面能力对于教育教学具有极大的应用潜力和价值[6],星火大模型已被接入众多教育产品,形成教学助手、学习助手、心理辅导助手和编程助手等多种典型应用场景,为教育领域的数字化、智能化发展和形态重塑提供支撑。因此,置身于数字化转型背景下,可以更加清晰地看到生成式人工智能技术给教育发展带来的机遇与挑战,更加深刻地理解智能技术之于教育信息化、教育现代化的革命性影响,探索未来教育形态变革创新之路。

二、生成式人工智能的发展现状及特征

  (一)生成式人工智能的新发展

  近年来,以深度学习技术为核心的生成式人工智能不断取得突破。2014年,生成对抗网络(Generative Adversarial Network,GAN)首次被提出,推动了复杂数据分布上的无监督学习发展[7];2017年,Transformer架构被发表,引入注意力机制处理长序列数据,迅速成为生成式人工智能模型的主流架构[8];2022年,美国OpenAI公司公开发布基于Transformer架构的生成式预训练大语言模型ChatGPT[9];2023年,OpenAI又发布了GPT-4,生成式人工智能逐渐走向成熟。

  紧跟国际生成式人工智能发展前沿,国内多家企业和机构加快研发,相继推出大语言模型、产品和相关底层基础设施及服务,掀起了生成式人工智能技术发展的新浪潮。为了规范和引导以大语言模型为代表的生成式人工智能的健康发展,国家网信办等七部门于2023年7月联合发布《生成式人工智能服务管理暂行办法》[10](以下简称《办法》),明确提出“鼓励生成式人工智能创新发展”“鼓励生成式人工智能算法、框架、芯片及配套软件平台等基础技术的自主创新”。近年来,国产化大语言模型技术攻关取得了可喜的成绩,首批国产大语言模型服务平台已向全民开放使用。

  (二)生成式人工智能的内涵及技术框架

  联合国教科文组织认为,生成式人工智能是一种根据自然语言对话提示词(Prompt)自动生成响应内容的人工智能技术[11]。中国国家互联网信息办公室将生成式人工智能定义为“具有文本、图片、音频、视频等内容生成能力的模型及相关技术”[10]。生成式人工智能技术可以被广泛地应用于不同领域,具有普遍适用性;能够通过不断的创新和学习持续优化,具有进步性;能够促进相关应用技术的创新,具有创新孕育性[12]。可见,生成式人工智能是根据提示词自动生成响应内容的人工智能技术的统称,包括具有内容生成能力的模型和相关技术,具有普遍适用性、进步性和创新性等特征,可用于生成文本、图片、音频、视频等。

  在生成式人工智能发展中,技术框架内各要素协同发展和融合创新,是生成式人工智能产业生态链健康发展的关键。生成式人工智能技术框架由基础层、模型层、能力层和应用层组成[13-14],如图1所示。

在上述技术框架中,基础层包含硬件设施、模型生产工具和数据资源等核心要素,提供存储资源、运算资源、合规数据和模型训练平台等,为模型训练与能力提升提供基础支持。模型层由文本大模型、视觉大模型和多模态大模型等构成,用于实现语言理解、信息抽取、图像检测和因果推断等任务处理,支撑上层内容生成能力,是生成式人工智能的“大脑”。能力层是生成式人工智能特定任务能力的实现,为应用层提供音频生成、代码生成、跨模态生成、场景生成、文本生成、图像生成和视频生成等能力。应用层向用户提供面向具体任务需求的知识问答、摘要生成、文稿撰写和情感分析等功能或服务。

  (三)以大语言模型为代表的生成式人工智能主要特征

  作为文本大模型的基础模型,语言模型是生成式人工智能语言能力的引擎,具有理解和生成人类自然语言的能力,能预测词序列的可能性或根据给定输入生成新文本[15]。通常,把参数规模达到百亿或以上、采用Transformer架构的语言模型称为大语言模型(Large Language Model,LLM)[16]。ChatGPT类大语言模型向用户提供自然语言会话交互接口,以提示词作为输入,使用统计模型预测和输出响应结果。以大语言模型为代表的生成式人工智能在模型规模、技术能力、训练方式和应用领域等方面具有显著的特征。

  1. 模型规模巨大。大语言模型的参数数量、训练数据集大小等分别达到或超过百亿、TB量级规模,呈现出规模巨大的特点。语言模型的性能依赖于模型的规模,包括参数数量、数据集大小和计算量[17]。大语言模型通过对海量的、大规模的语料库学习,使用巨量参数抽取和表示人类语言规则及其逻辑关系,并进一步根据提取到的语言特征生成符合人类语言习惯的新文本。OpenAI公司的GPT-3模型训练数据量和模型参数量分别达到了5000亿标记(Tokens)和1750亿,华为公司的PanGu-Σ模型参数量更是达到1.085万亿[18]。

  2. 技术能力强大。大语言模型具有强大的情景学习、思维链推理和多轮对话等能力[19]。用户发起新的对话时,大语言模型会将之前的对话历史作为上文,再生成一个下文作为新对话的响应,表现出多轮次对话和上下文感知能力。大语言模型能把一个复杂问题分解为多步推理的简单问题进行解决,也能通过自然指令的学习泛化自身能力[20]。

  3. 训练方式灵活。ChatGPT类大语言模型灵活地采用了预训练加微调的训练方式[21]。为了解决数据驱动的深度学习模型缺少大规模的标注数据、人工标注代价大和内容生成效果不佳等问题,大语言模型先使用大语料库对模型进行预训练,获得面向通用目的的任务处理基础能力后,再通过来自人工反馈的强化学习(Reinforcement Learning from Human Feedback,RLHF)方法对特定任务进行模型参数微调,达到提升内容生成质量的目的。

  4. 应用领域广泛。在混合来源语料库上进行预训练的大语言模型捕捉了丰富的多领域知识,可广泛应用于健康、医疗保健、教育、法律、金融和科学研究等领域任务的处理[16]。ChatGPT能够处理和生成超过25种编程语言和超过100种自然语言文本,提供语言生成、语言翻译、文本摘要生成、代码生成、情报分析等多项服务。由大语言模型驱动的微软Office 365 Copilot可以帮助用户完成整理会议摘要、处理邮件等多种任务[12]。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

之乎者也·

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值