
AI(人工智能) 内容分享
文章平均质量分 87
人工智能(Artificial Intelligence),英文缩写为AI。 它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是新一轮科技革命和产业变革的重要驱动力量。
之乎者也·
机车疾驰在路上,代码飞舞在指尖,热血与逻辑交织,创造属于我的数字世界。
展开
-
AI 内容分享(四十):如何用AI搞定实战项目
倒入到sd中的图生图模式,选择redanimated大模型,在正向提示词框中输入画面的颜色和元素信息,选择图生图模式,打开controlnet中的canny模式和tile模式,迭代步数选25,采样方法选择:euler a,提示词引导系数选择7,重绘幅度选择0.65,多生成几次,生成效果如右图,可以看出画面的光影效果已经很不错了,基本能达到我们正常输出画质要求。单一lora生成的结果,并不理想,细节错误较多,风格较为扁平,缺少层次,视觉效果一般,风格较为老套等等,没有办法直接进行使用。原创 2024-02-07 18:13:38 · 1295 阅读 · 0 评论 -
AI 内容分享(三十九):AI驱动的内容创作平台
它既提高了企业的内容创作速度,还保留他们品牌的独特性。它生成的所有内容都是原创且全新的,它的目标是简化企业品牌的内容创作,使其更加高效,吸引目标受众。”品牌之声“的特色彰显了 Contents.com 在 AI 内容创作领域的领先地位,同时也体现了其对客户需求的深刻理解和对市场趋势的敏锐洞察。通过专业的人工服务来补全 AI 生成内容创作中的一些不足与疏漏,Contents.com 的独特卖点在于其人工智能和人性化的无缝结合,使用户能够从技术中受益,同时还有专业人员来审核、保证内容的真实性和相关性。原创 2024-02-07 17:07:11 · 945 阅读 · 0 评论 -
AI 内容分享(三十八):人工智能如何多视角看世界
多模态模型通过模仿和增强这种多感官的能力,对不同类型的数据和信息,如文本、图像、视频、音频等,进行学习、理解和融合,从而使模型能够更好地模拟人类感知和认知的复杂性,为人工智能的研究和应用带来了许多新的可能性和机遇。多模态数据的引入丰富了模型的输入和输出,使其变得更加多样化,从而增强了模型的性能和泛化能力,同时也提升了模型的鲁棒性和可解释性。例如,一个情感分析的模型,如果能够同时利用语音的声音信息和文本的语义信息,就可以更好地理解说话者的情绪和意图,提供更好的情感分析结果并给出更为合理和全面的结果解释。原创 2024-01-21 21:26:15 · 1114 阅读 · 0 评论 -
AI 内容分享(三十七):AI大模型时代,企业如何构建数据智能基础设施?
冯森指出,“面向领域模型的全链路闭环的多模态社区,滴普科技DEEPNOVA技术社区支持模型训练数据集、领域场景精调模型、推理加速和小型化,让各种基础通用大模型在企业服务行业落地具备了完整的工具链体系,同时在企业应用推理端吞吐性能提升10倍+,大幅度降低了企业应用大模型的成本。数据服务与业务相关,将基于专家经验形成的规则或者机器模型学习的结果,以及结合主动元数据,用在数据质量监控以及优化改进数据的准备过程(如集成流程或者引擎优化),如元数据推荐、流程推荐、资产推荐、建议推荐、执行计划推荐、计算引擎推荐等。原创 2024-01-21 20:43:59 · 1071 阅读 · 0 评论 -
AI 内容分享(三十六):如何从零开始,打造一家AI驱动的公司?
以上是我们结合当前AI工具的发展,分别从设计、建立网站、开发应用程序、内容生成、销售、客户关系管理、数据分析和公司运营等角度展开,对“如何打造一家AI驱动的公司”这个关键问题,给出一个初步的答案。公司的产品使用人工智能帮助您撰写电子邮件,丰富潜在客户数据,提供买家意图,自动化您的外展A/B测试,并分析您发送的内容。此外,它还会制作图表!值得注意的是,今天的商业社会,并非流量为王。如果使用人工智能工具生成几个简短、浅薄的帖子,后面没有太多内容,那么您也不会获得太多流量,也更不会吸引很多用户使用您的产品。原创 2024-01-21 18:36:19 · 1094 阅读 · 1 评论 -
AI 内容分享(三十五):ChatGPT是如何工作的
大语言模型的出现使得开发团队能够探索新的产品功能和应用。通过与大语言模型集成,产品可以提供更强大的自然语言处理能力,如智能搜索、自动摘要、语义理解等。可以借助大语言模型改进产品的用户界面和交互方式,通过使用自然语言处理和生成能力,产品可以提供更智能、更自然的对话和指导,从而提升用户体验,产品运营可以利用大语言模型生成高质量的文本内容,节省时间和资源,并为用户提供个性化的、即时的内容。人工智能的发展改变最大的是我们的思维方式,还是那句话,干掉你的不是人工智能而是掌握了人工智能的人。原创 2024-01-21 17:45:46 · 991 阅读 · 0 评论 -
AI 内容分享(三十三):2024人工智能四大趋势
但值得注意的是,届时,人类如何监督这些从智能水平上超过人类的人工智能,确保其不会危害人类,又是一个值得思考的问题。综上所述,展望2024年,无论是人工智能技术自身的迭代发展,还是其对数据价值的重塑,抑或是向各行业、各领域的应用渗透,人工智能的影响可谓无处不在,既为科研、创新和经济赋能,又带来新的挑战与风险。例如,尽管英文课本的对话中出现的可能是“小明”“小红”这样的虚构人名,但并不影响学生们由此掌握英语,因此,从某种意义上,对于学生而言,教材可以看作一种经过编纂、筛选和处理的“合成数据”。原创 2024-01-21 17:18:58 · 905 阅读 · 0 评论 -
AI 内容分享(三十二):2024年AI的发展前景
如果你想象你的电脑,你的电脑可以做任何事情,但你是以应用程序的形式使用它的,比如Microsoft Word、Adobe Photoshop或愤怒的小鸟等,有一个你点击或打开的具体东西来做一项具体的工作。但是,如果AI要变得更好,它需要以更人性化的方式进行交流,为此,它需要去除仅仅是文本聊天的限制。更有可能的是,AI将被集成到我们已经拥有的现有工具中,我们不会想专门购买一个AI工具,我们会想要在我们已经使用的工具中具有AI功能——智能手机是一个非常有用的随身携带工具,智能手机已经得到了一些显著的AI提升。原创 2024-01-21 16:22:34 · 961 阅读 · 0 评论 -
AI 内容分享(三十一):AI时代,年轻人如何适应?
过去一年,ChatGPT的出现让人耳目一新。人们一方面为它强大的功能和未来预期的广泛使用感到兴奋,另一方面也为人工智能技术的潜在风险感到担忧。喜忧之间,当前趋势更偏向接受和拥抱。一年间,以GPT技术为代表的全球大模型竞赛还在不断升级,已经开始应用到各行各业。经历过一段时间的沉淀,我们有必要认真探讨大模型与社会相关的一系列问题。比如,该如何看待这项技术的本质,以及由此衍生的全新商业生态?如何看待AI对社会的影响、冲击,甚至恐惧?如何在控制风险的同时,让其成为对社会、对人类进步普惠而有益的工具?回顾人类科技历史原创 2024-01-21 16:07:37 · 1018 阅读 · 0 评论 -
AI 内容分享(三十):AI 的未来:去中心化人工智能
在过去的一年里,OpenAI 推出的 ChatGPT 3.5 让人工智能成为讨论的焦点,ChatGPT 展示出了人工智能巨大的经济潜力,同时也引发了全球对其带来的影响和风险等方面的讨论。随着乐观情绪的增长,怀疑也随之而来。潜在的后果开始给监管机构敲响警钟。人工智能的迅速崛起和模糊的监管框架,与处于早期的加密货币领域相呼应。两个行业似乎就像两条平行线一样,去中心化的 Web3 与人工智能潜在的中心化力量形成互补。原创 2024-01-21 15:39:40 · 1252 阅读 · 0 评论 -
AI 内容分享(二十九):2024年AI商业落地的十个方向
在物欲横流的冲击下,中国没有像样的程序员社区,中国的教育体制培养出的是在AI时代被抛弃的程序员和知识搬运工,有科学专研精神的人不多,全民创造力无法被激发。2024年,伴随区块链市场的复苏,AI和Web3在去中心化算力、AI经济价值的实现、智能合约自动化与优化、去中心化数据市场、个人隐私数据的使用、AI创作数字艺术品、数字孪生等方面,会找到突破点。当AI经过自我学习和模型升级,当它了解到我总在搜索专业文献后,当我再次询问药物副作用同样模式的问题时,AI会自己启动搜索专业互联网的动作,而不需要我再做指示。原创 2024-01-21 15:36:43 · 1099 阅读 · 0 评论 -
AI 内容分享(二十八):生成式AI这一年:从群雄乱战到生态确立,世界已被改变
而慢慢的,我们开始发现微软和OpenAI之间的关系发生了一点微妙的变化:在Sam Altman的董事会罢免风波期间,微软和CEO纳德拉除了快速稳定局面之外,还将不少OpenAI的客户,特别是大客户群体,转移到了自身平台上,因为通过微软云计算服务Azure,也能调用OpenAI模型,包括ChatGPT,Codex以及DALL-E,还不用担心OpenAI的内斗风险。再然后,ChatGPT发布了,用户们发现,ChatGPT不用付费就能实现一样的效果,于是Jasper的融资马上中断,公司也开始了裁员。原创 2024-01-21 15:09:02 · 1017 阅读 · 0 评论 -
AI 内容分享(二十七):AI的星星之火必将燎原
我个人作为群主一般大家转发到群里的文章等都会看看,时间一长就发现有几个同学不对劲,他们不定期发文章,可总的频率很高,每次发的文章标题很火,但内容很稀薄,也很短,内容中间必然带广告。背景很简单:琢磨事这号有个读者群,群并没什么特别的商业化目的,纯粹聚集了些对AI感兴趣的同学日常聊聊天,比如做些文章中观点和产业趋势的探讨。入群的也都是做这个行业并且对AI有点想法的同学。对于AIGC工具,模型的独特性是关键的,对于智能原生应用,深研模型本身可能反倒是有害,更需要往外看,在技术和场景的结合处定位准。原创 2024-01-21 12:30:57 · 727 阅读 · 0 评论 -
AI 内容分享(二十六):AI 开发必看的 6 款开源矢量数据库
在 AI 应用大行其道的时代,高效处理和搜索矢量数据的能力至关重要。矢量数据库专为此目的而设计,为检索增强生成(RAG)应用程序、推荐系统和高级搜索引擎等应用提供了强大的基础架构。无论您是要创建一个 "与 PDF 聊天 "的应用程序,还是驱动复杂的推荐系统,矢量数据库都是使这一切成为可能的引擎。今天,我们将分享 6 个免费开源矢量数据库(Vector Databases),它们不仅能高效地存储矢量,还能提供强大的搜索功能、可扩展性和易集成性。原创 2024-01-21 11:17:17 · 1142 阅读 · 0 评论 -
AI 内容分享(二十五):生成式人工智能与未来教育形态重塑
当前,不断更迭的智能技术正在加速教育的数字转型与智能升级,变革和重塑未来教育形态。尤其是以ChatGPT、GPT-4等为代表的生成式人工智能技术(Generative AI,GAI或GenAI)具备了通用人工智能(Artificial General Intelligence,AGI)的特征[1-2],正推动着互联网资源生产方式转向人工智能生成内容(AI Generated Content,AIGC)范式[3],使得人工智能在数字化实践中的作用更为凸显。原创 2024-01-21 10:55:14 · 2044 阅读 · 0 评论 -
AI 内容分享(二十四):AI PC 究竟是智商税还是未来趋势?
ChatGPT 的出现,不仅改变了 AI 领域的发展格局,语言 AI 技术地位逐级攀升,取代视觉 AI 成为今日通用人工智能(AGI)话题的 C 位,同时也改变了云计算的发展格局——智能算力的角色将更加关键,企业技术架构将从过去的以CPU为计算核心,逐渐转向以GPU为代表的智能计算为核心,GPU+CPU+DPU+…PC厂商在过去的两年里,一直都面临着严峻的挑战,消费电子市场的萎靡,芯片成本的上涨,竞争对手的增加,使得市场的竞争愈发激烈,而消费者的消费欲望降低和换机周期增长,使得整体市场都陷入困境。原创 2024-01-20 23:41:26 · 924 阅读 · 0 评论 -
AI 内容分享(二十三):为何说真正的AI PC还没登场?
2022年12月ChatGPT3的诞生,宣告了大模型元年的开启。除了感叹科技的爆发式增长,人们更关心的是AI和大模型如何走进自己的生活。2023年下半年,芯片、电脑终端等厂商在AI PC方向上暗流涌动。PC被业界普遍认为会最先走进AI舞台中央,成为个人拥抱AI的第一入口,并在2024开启AI PC的元年。但,什么是真正的AI PC?它将何时到来?仍有诸多疑问需要远见者的思考与实践。因此,我们特别开启特别策划专题《请回答AI PC》,希望与你一起探究关于AI PC的一切。原创 2024-01-20 23:35:03 · 978 阅读 · 0 评论 -
AI 内容分享(二十二):人工智能大势
同时,随着社会和科技的发展,“较低树枝上的果实基本都被采摘完了”,而且社会分工也越来越细,因为每一个细分领域中的知识都可能需要一个人穷其一生去学习和掌握,人们的知识被限制在了很窄的领域中,像达芬奇那样上知天文、下知地理的博物学家很难再出现,因此看似不相关的跨领域结合也就越来越困难,重大创新则更是罕有。每一种工具的出现都是对于人类某种能力的延伸,比如刀、锄头、锤子的出现是对人手能力的延伸,车辆是对人脚能力的延伸,望远镜是对人眼能力的延伸,电话是对人耳和嘴能力的延伸……原创 2024-01-20 23:29:37 · 1288 阅读 · 0 评论 -
AI 内容分享(二十一):AI原生时代:我想要的AI Native
比如,有个“打车专员Dell”,它可以自动调用各种打车软件,帮我找到最快的车,我只需要告诉Dell我要打车,它就会帮我搞定一切。它们可能不需要最先进的技术,或者AI只是产品中的一小部分,但就是这一小部分,让产品有了质的飞跃,能做以前做不到的事。现在,有些AI小工具和聊天机器人就是这样,比如那些能帮你切西瓜、弹钢琴、模仿汤姆猫的,虽然一时火,但能不能长久留住用户,还得看它们能不能持续给用户带来价值。相反,那些意想不到的场景,因为AI而变得可行,会让用户感到惊奇,这种“惊奇”才是营销的关键。原创 2024-01-20 23:20:53 · 1149 阅读 · 0 评论 -
AI 内容分享(二十):人工智能基础-大模型与LLM
生成式AI能让航空公司根据客户提供的数据创建量身定制的沟通话术,为客户提供个性化的Offer选项、提升客户出行体验及满意度。挑战则包括考虑新技术对老年人群的友好性,确保AI生成的内容,特别是承诺是可实现的,避免误解和一本正经的胡说八道。由于这种规模的模型需要大量的内存和计算资源,通常只有拥有高端硬件和专业知识的组织才能承担部署和运行这样的模型。偏差是添加到加权输入之上的另一种类型的参数,它们用于调整输出,即使在所有输入都是零时也能得到一个非零的输出。这些向量是通过在模型的训练过程中学习到的嵌入层获得的。原创 2024-01-20 22:57:45 · 684 阅读 · 0 评论 -
AI 内容分享(十九):对话AI:人工智能与创新创业创造
大学教育需要把握这个新时代的机遇,通过融合人工智能和创新创业创造,培养出适应新时代需求的人才。5-作为一位熟悉通用人工智能与大学教育的资深人士,如果请您给在校的大学生一些建议,让他们能够更好适应通用人工智能时代的到来,更好学习,更好提升自己的创新创业创造能力,你会有哪些建议,请列举你认最重要的十点。原创 2024-01-20 22:47:49 · 1046 阅读 · 0 评论 -
AI 内容分享(十八):秒懂AI-深度学习四种常用激活函数:Sigmoid、Tanh、ReLU和Softmax
Softmax是一种常用的激活函数,主要用于多分类问题中,可以将输入的神经元转化为概率分布。ReLU的输出范围是[0, +∞),而输入值为负数时输出为0,这导致ReLU输出的分布不对称,限制了生成的多样性。Leaky ReLU在输入小于或等于0时,输出一个较小的斜率,避免了完全的“死亡神经元”问题。当输入值小于或等于0时,ReLU的输出为0,导致该神经元失效,这种现象称为“死亡神经元”。与Leaky ReLU不同的是,PReLU的斜率不是固定的,而是可以根据数据进行学习优化。原创 2024-01-20 22:27:44 · 4688 阅读 · 0 评论 -
AI 内容分享(十七):人工智能:发展现状和应用前景
人工智能可以通过分析用户的兴趣、喜好、行为等,提供定制化的娱乐内容和服务,如音乐、视频、游戏、动漫等。深度学习可以分为卷积神经网络、循环神经网络、生成对抗网络、变分自编码器等类型,根据不同的结构和功能,可以实现图像识别、语音识别、自然语言处理、计算机视觉、强化学习等任务。另一方面,人工智能也可能引发人类的恐惧、不信任、失业、歧视等问题,甚至可能导致人类的灭亡。机器学习可以分为监督学习、无监督学习、半监督学习和强化学习等类型,根据不同的目标和方法,可以实现分类、聚类、回归、关联、预测等任务。原创 2024-01-20 22:21:05 · 1629 阅读 · 0 评论 -
AI 内容分享(十六):人工智能的未来是什么?
人工智能可以定义为计算机科学的一个分支,其目标是创造与人类智能相当的技术。但智力到底是什么?如何利用技术来复制智力?不存在单一的解释,并且已经开发了许多理论和方法来回答这些问题。鉴于定义“智能”一词本身有多困难,人工智能的确切定义实际上是不可能的。如果人工智能要模拟人类智能,那么人工智能应该与人类有多相似?机器是否应该以与人脑相同的方式构建?这种模拟方法旨在实现大脑功能的完整复制。也许机器只要具有人的外表,表面与人类相似就足够了?这种现象学方法以人类在与人工智能交互时实际感知或体验的方式为中心。原创 2024-01-20 22:14:59 · 903 阅读 · 0 评论 -
AI 内容分享(十五):生成式人工智能实践
尽管面临一定的不确定性,但该举措表明,NICE正在利用AI和自动化,将CXone打造成一种更加智能化的工具,以推动联络中心采取预测性行动。尽管该功能可能会提高Nuance Mix的吸引力,但其成功将取决于解决方案能否有效地访问和理解相关知识资源,如果无法做到这一点,那么该功能的潜力可能会受到限制。它可以通过消除开发工作,加速创新,并为更广泛的自动化打开大门,从根本上改变构建智能联络中心解决方案的方式。此外,它如何与CXone的其他功能融合也值得关注,这可能会影响用户采用该工具的意愿。原创 2024-01-20 11:27:48 · 1077 阅读 · 0 评论 -
AI 内容分享(十四):AI Native工程化
为了解决这一问题,我们实施了细致的数据注释策略,对数据集中的这些难点内容进行了详细的上下文注释,并赋予它们准确的情感标签,从而确保模型能够在正确的语境下理解和运用这些特定表达。这种全面的数据驱动方法不仅增强了Prompt的实用性和吸引力,还提高了整个AI互动系统的性能和效率,为用户提供了更加个性化和富有吸引力的互动体验。平台的数据产出为我们的飞轮拼上了最后一块积木,至此我们包含三个互相依赖且协同工作的关键部分:生产环境的真实数据生成、平台的数据分析,以及Prompt的迭代优化的飞轮已经成型。原创 2024-01-20 11:23:35 · 858 阅读 · 0 评论 -
AI 内容分享(十三):商品分类:AI落地实践
基于真实需求,让AI落地,使用embedding模型做大数据量分类。为数十万商品分类通常想到的办法是用NLP+特定分类算法(如是SVM)来实现,涉及数据清洗,特征提取,模型训练,调试和集成等工作。看起来是项大工程。借助现有AI的能力,可以加速实现。本文是基于真实需求场景的探索和回顾。原创 2024-01-20 11:08:47 · 2420 阅读 · 2 评论 -
AI 内容分享(十二):AI 大模型实践与实用技巧
如果 AI 模型输出的风格不符合你的要求,可以通过设置口吻、说明面向的人群等,让大模型按照你的意图来回答问题。,如果你使用 ChatGPT 官网,推荐 ChatGPT Prompt Plus 插件,支持自定义提示词,可以快速呼出,还支持提示词中定义变量,支持为提示词分组,在呼出提示词时选择或者填写即可进行提问,非常方便。在 AI 发展的当前阶段,我认为最重要的是学好提示词,掌握 AI 工具的最佳实践,才能成为最早一批灵活驾驭大模型来更好解决你生活和工作问题的人,才能在 AI 时代的早期取得一些竞争优势。原创 2024-01-20 10:58:01 · 1425 阅读 · 0 评论 -
AI 内容分享(十一):AI工具在研发流程中的最佳实践
3.2.2.2 模型 DTO 快速生成在完成第一个字段的注释后,Copilot 会自动补全当前成员变量的定义。还可以推测后续该模型可能存在的字段,能给出不错的建议参考,且符合个人的命名习惯。3.2.2.3 Stream逻辑表达式自动完成Copilot 可以根据注释,快速补全 Stream 逻辑表达式,结果基本正确。取数据做某件事:3.2.2.4 条件语句和循环快速补偿Copilot 可以快速补全条件语句(如if语句或switch语句)和循环语句(如for循环或while循环)。If条件For循环。原创 2024-01-20 10:08:00 · 1632 阅读 · 1 评论 -
AI 内容分享(十):AI设计实践的探索与启示
相信未来随着法规的完善,既能保证创作者的知识产权,又能发挥 AI 的优势,这也促进了整个设计领域的健康发展。先用手绘出想要的珠宝的形状样式,然后去找到一系列符合他创作理念跟设计想法的图,比如像右边这张蓝色的金鱼作为参考图,然后他就通过Midjourney去进行这个垫图生成,在垫图的过程中他输入自己想要的材质、配色等描述,然后从众多个创意图里面再不断地去反复地跑,之后跳转出一张比较满意的,最后生成最终的效果图,生成之后他还要再去做一系列这个符合珠宝工程学的这个细节修改,然后才能去做这个设计的交付。原创 2024-01-20 10:07:10 · 1016 阅读 · 0 评论 -
AI 内容分享(九):深入一线:Shopify AI落地
模版对应的是AI优化之后的区域数据模型——即针对不同场景,利用不同的数据训练出多种更细化、但更有效的垂直场景。Shopify利用Sidekick的自然语言对话,来为平台上的每一个卖家提供了超低门槛的解决方案:任何一个卖家只需要问问题,就能调用Sidekick对店铺或者销售数据进行分析,Sidekick会直接给出结论,同时给出相关联的数据报告参考。提供不同层级的信息,例如在对话中,不仅仅是提供纯文字,还有卡片式的预览等格式化信息,甚至是全局式的结果直接呈现,信息格式的多样化提供了交互设计的灵活性。原创 2024-01-19 13:51:52 · 1413 阅读 · 0 评论 -
AI 内容分享(八):基于Fuzzing和ChatGPT结合的AI自动化测试实践
有赞目前,结合insight接口自动化平台、horizons用例管理平台、引流回放平台、页面比对工具、数据工厂等,在研发全流程中,已经沉淀了对应的质量保障的实践经验,并在逐渐的进化中。在AI能力大幅进步的背景下,笔者尝试将业务场景给到ChatGPT,进行了文本用例生成的测试,观察到其输出测试用例的逻辑和测试人员编写用例的逻辑有较大的相似之处。在对ChatGPT的输出结果进行简单的调整和修改后,就可以用于业务测试中了。原创 2024-01-19 13:48:26 · 1259 阅读 · 0 评论 -
AI 内容分享(七):加速计算,为何会成为 AI 时代的计算力“新宠”
加速计算是指使用专用硬件来执行某些类型的计算,其效率要比仅使用通用中央处理器(CPU)高。利用图形处理单元(GPU)、专用集成电路(ASIC)(包括张量处理单元(TPU))和现场可编程逻辑门阵列(FPGA)等设备的强大功能,以更高的速度执行计算,从而加速计算过程,一般我们也将这些设备称之为加速器。这些加速器尤其适用于可被分解为较小并行任务的项目,如高性能计算 (HPC)、深度学习、机器学习、人工智能和大数据分析。通过将指定类型的工作分派到这些专用加速计算硬件上,大大提高了系统的性能和效率。原创 2024-01-19 13:29:37 · 1090 阅读 · 0 评论 -
AI 内容分享(六):人工智能趋势
相反,千禧一代对人工智能驱动的搜索表现出更大的开放性,40% 的人表示愿意转换。根据Gartner 的见解,到 2026 年,使用 AI TRiSM 管理人工智能系统的公司将通过消除 80% 的不准确或虚假数据来做出更好的决策。在Gartner 的报告中,我们还可以看到,到 2026 年,三分之一的新应用程序将使用人工智能来创建个性化和自适应的用户界面。2023年11月,来自政府、人工智能公司和民间社会的专家齐聚一堂,召开人工智能安全峰会,讨论人工智能(AI)的风险,特别是最新、最先进的人工智能技术。原创 2024-01-19 13:14:04 · 1322 阅读 · 0 评论 -
AI 内容分享(五):AI 集群基础设施 NVMe SSD 详解
NVMe (non-volatile memory express)是一种高性能、NUMA(非统一内存访问)优化的、高度可扩展的存储协议,用于连接主机和内存子系统。NVMe是专门为NAND、闪存等非易失性存储设计的,NVMe协议建立在高速PCIe通道上。它可以使我们能够充分利用SSD和存储类内存(SCM)的速度。GPUDirect 是 NVIDIA 开发的一项技术,可实现 GPU 与其他设备(例如网络接口卡 (NIC) 和存储设备)之间的直接通信和数据传输,而不涉及 CPU。原创 2024-01-19 13:03:45 · 2434 阅读 · 0 评论 -
AI 内容分享(四):生成式AI全面指南
20 世纪 80 年代和 90 年代见证了自然语言处理 (NLP) 的出现,这是人工智能中的一个关键领域,旨在使机器能够理解和生成人类语言。生成式人工智能的未来前景广阔,它将重塑我们与技术交互和解决复杂问题的方式。从 20 世纪 50 年代文本分析的起步,到 GPT(生成式预训练Transformer)等强大语言模型的出现,每个阶段都标志着我们在创造能够理解和生成人类语言的机器的探索中取得了重大飞跃。生成式AI模型是人工智能 (AI) 模型的一个子集,旨在生成与现有数据类似或遵循现有数据中的模式的新数据。原创 2024-01-19 12:52:06 · 1508 阅读 · 0 评论 -
AI 内容分享(三):构建高效 AI 应用
在上述详细思路里有提到了几个关键词:代理角色、Prompt Template、Tool、LLM。Tool 还可以被进一步往顶层抽象,从整体执行计划来看,代理角色把每个 Tool 串联成一个链,最终形成一个可执行的 Pipeline,因此 Tool 可以被抽象成 Chain。原创 2024-01-19 11:41:48 · 999 阅读 · 0 评论 -
AI 内容分享(二):如何使用AI做事
越来越强大的人工智能系统正在以越来越快的速度发布。本周,Claude 2首次亮相,这可能是公众可用的第二强大的AI系统。一周前,Open AI发布了代码解释器,这是迄今为止最先进的AI模式。在那之前的一周,一些AI获得了查看图像的能力。然而,似乎没有一个人工智能实验室提供任何用户文档。相反,唯一的用户指南似乎是Twitter影响者线程。这可能不是一个完美的用户指南,但它将作为人工智能当前状态的一点方向。原创 2024-01-19 11:25:06 · 1023 阅读 · 0 评论 -
AI 内容分享(一):人工智能技术概述
人工智能 (AI),数字计算机或计算机控制的机器人执行通常与智能生物相关的任务的能力。该术语经常用于开发具有人类智力过程特征的系统的项目,例如推理、发现意义、概括或从过去的经验中学习的能力。自 1940 年代数字计算机发展以来,已经证明可以对计算机进行编程以非常熟练地执行非常复杂的任务,例如发现数学定理的证明或下棋。尽管如此,尽管计算机处理速度和内存容量不断进步,但目前还没有程序可以在更广泛的领域或需要大量日常知识的任务中与人类的灵活性相匹配。原创 2024-01-19 11:08:52 · 2018 阅读 · 0 评论 -
AI Agent最新综述:多模态互动领域的新视角探索
这是2024年1月7号最新发布的一项研究,由Stanford University的Zane Durante, Bidipta Sarkar和Rohan Taori,以及Microsoft Research, Redmond的Qiuyuan Huang, Naoki Wake和Jianfeng Gao,University of California, Los Angeles的Ran Gong和 Demetri Terzopoulos,University of Washington的Jae Sung Pa原创 2024-01-19 10:49:08 · 3082 阅读 · 1 评论