【ROC曲线】ROC曲线易懂理解与多分类的理解

00简介

ROC曲线,全称Receiver Operating Characteristic Curve(受试者特征曲线)。

ROC曲线由灵敏度为纵轴,(1-特异度)为横轴绘制而成。通过绘制ROC曲线可以让读者直观地看到某指标各取值对结局指标的诊断或预测能力。
在这里插入图片描述
在这里插入图片描述

其中名词解释:

灵敏度(sensitivity),即敏感度,是指筛检方法能将实际有病的人正确地判定为患者的比例。

特异度(specificity),是指筛检方法能将实际无病的人正确地判定为非患者的比例。

在建模类文章中,ROC曲线是对整个模型计算出来的各样本发生某结局(或属于某类别)的概率指标进行绘制,向大家展示的是整个模型的诊断效能,故ROC曲线常被用于各类诊断模型和预测模型的评价与比较,是模型预测效果的重要评价指标之一。

一般来说,对于两种诊断方法可以有成组比较法和配对比较法,成组比较法是两种诊断方法作用于不同受试者,配对比较法则是针对于同一受试者接受两种不同的诊断方法。ROC曲线适用于二分类别的反映效果或结果的变量。

01 ROC曲线评价指标

ROC曲线使用曲线下面积(AUC)的大小对模型进行评价,AUC的取值范围为0.5到1之间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值