摘要
针对锂离子电池剩余使用寿命(remaining useful life,RUL)传统预测方法的精确度与稳定性较低等问题,融合卷积神经网络( convolutionalneural network,CNN)和双向长短期记忆( bidirectional long short-termmemory,BiLSTM)神经网络的特点,设计一种锂离子电池剩余使用寿命预测方法。为了充分使用电池数据的时间序列特性,使用卷积神经网络(convolutional neural network,CNN)提取锂离子电池容量数据深层特征,利用BiLSTM 神经网络的记忆功能保留数据中的重要信息,预测电池RUL变化趋势。通过采用NASA ( National Aero-nautics and Space Administration)的锂离子电池数据。经实验结果表明,CNN-BiLSTM具有更高的预测稳定性和精度。
问题描述
锂离子电池主要由正极、绝缘片、负极和隔膜等部分组成,如图1所示。锂离子电池循环次数2是指锂离子电池完成一次完整充电放周期时,其循环次数加1。
健康状态(state of health,SOH)可通过锂离子电池内阻、锂离子电池容量、锂离子电池电量和锂离子电池峰值功率等物理量表征,用于判断锂离子电池性能的退化程度。锂离子电池容量具有良好的连续退化趋势且容量作为能直接表征当前锂离子电池存储电能能力的重要参数,被广泛用作锂离子电池RUL预测的健康指标。本文以当前时刻的锂离子电池容量与初始容量之比作为SOH定义标准,可定义为式(1)。
其中,capacity,为t时刻充电完全时,锂离子电池的容量;capacity。为初始时刻锂离子电池的额定容量。
锂离子电池RUL是指该锂电池经过一定的充放电过程后,从当前容量衰减到失效阈值时所需的充放电循环次数,定义如下:
其中,N指的是当前时刻,锂离子电池的循环次数。锂离子电池的寿命终止(end of life,EOL)定义为锂离子电池SOH值首次降至规定失效阈值时的循环次数。当SOH衰减至70%时,则锂离子电池达到寿命终止(即失效阈值)。
CNN-BiLSTM融合神经网络
训练结果:
RMSE =0.7911
** 下载链接:**代码链接