控制实验7.18

状态反馈

电机状态空间模型 x = [ i n ] x=\begin {bmatrix} i \\ n \end{bmatrix} x=[in]
{ i ˙ = − R L i − C e ϕ L i + 1 L u n ˙ = 30 C T ϕ π J i + d ( t ) \left \{ \begin{matrix} \dot i = -\frac{R}{L}i-\frac{C_e \phi}{L}i + \frac{1}{L}u \\ \dot n = \frac{30C_T\phi}{\pi J}i+d(t) \end {matrix} \right. {i˙=LRiLCeϕi+L1un˙=πJ30CTϕi+d(t)
[ i ˙ n ˙ ] = [ − R L − C e ϕ L 30 C T ϕ π J 0 ] [ i n ] + [ 1 L 0 ] u + [ 0 d ( t ) ] \begin{bmatrix} \dot i\\ \dot n \end{bmatrix}=\begin{bmatrix} -\frac{R}{L} & -\frac{C_e\phi}{L}\\ \frac{30C_T\phi}{\pi J} & 0 \end{bmatrix}\begin{bmatrix} i\\ n \end{bmatrix}+\begin{bmatrix} \frac{1}{L}\\ 0 \end{bmatrix}u+\begin{bmatrix} 0\\ d(t) \end{bmatrix} [i˙n˙]=[LRπJ30CTϕLCeϕ0][in]+[L10]u+[0d(t)]

电机参数取值
R / Ω R/\Omega R2.785
L / m H L/mH L/mH0.0085
J / k g ∗ m 2 J/kg*m^2 J/kgm20.0044
C e C_e Ce0.7
C T C_T CT6.685
Φ \Phi Φ1

系统矩阵 A = [ − 338.2352 − 82.3529 14508 0 ] , B = [ 117.65 0 ] , Q c = [ B A B ] = [ 117.65 39800 0 1706900 ] , r a n k    Q c = 2 A=\begin{bmatrix} -338.2352 & -82.3529 \\ 14508 & 0 \end {bmatrix},B=\begin{bmatrix} 117.65 \\ 0 \end{bmatrix},Q_c=\begin {bmatrix} B & AB \end{bmatrix}=\begin{bmatrix} 117.65 & 39800 \\ 0 & 1706900 \end{bmatrix},rank\;Q_c=2 A=[338.23521450882.35290],B=[117.650],Qc=[BAB]=[117.650398001706900],rankQc=2因此系统完全能控。
系统矩阵A的特征值为 − 169.1 ± j 1079.9 -169.1\pm j1079.9 169.1±j1079.9,位于左半平面,因此系统稳定。
可以通过状态反馈将系统闭环极点配置在-170,-170.
u = K x , K = [ k 1 k 2 ] u=Kx,K=\begin{bmatrix} k_1 & k_2 \end{bmatrix} u=Kx,K=[k1k2],
A + B K = [ a 11 + b 1 k 1 a 12 + b 1 k 2 a 21 + b 2 k 1 a 22 + b 2 k 2 ] = [ 117.65 k 1 − 338.2353 117.65 k 2 − 82.3529 14508 0 ] A+BK=\begin{bmatrix} a_{11}+b_1 k_1 & a_{12}+b_1 k_2\\ a_{21}+b_2 k_1 & a_{22}+b_2 k_2\end {bmatrix}=\begin{bmatrix}117.65k_1-338.2353 & 117.65k_2-82.3529\\ 14508 & 0\end {bmatrix} A+BK=[a11+b1k1a21+b2k1a12+b1k2a22+b2k2]=[117.65k1338.235314508117.65k282.35290]
∣ λ I − A ∣ = ∣ λ + 338.2352 − 117.65 k 1 82.3529 − 117.65 k 2 − 14508 λ ∣ = λ 2 + ( 338.235 − 117.65 k 1 ) λ + 14508 ( 82.35 − 117.65 k 2 ) = λ 2 + 340 λ + 17 0 2 |\lambda I-A|=\left | \begin{matrix} \lambda+338.2352-117.65k_1 & 82.3529-117.65k_2\\ -14508 & \lambda \end{matrix} \right |=\lambda^2+(338.235-117.65k_1)\lambda+14508(82.35-117.65k_2)=\lambda^2+340\lambda+170^2 λIA= λ+338.2352117.65k11450882.3529117.65k2λ =λ2+(338.235117.65k1)λ+14508(82.35117.65k2)=λ2+340λ+1702
k 1 = − 0.015 , k 2 = 0.683 k_1=-0.015, k_2=0.683 k1=0.015,k2=0.683
u = [ k 1 k 2 ] [ i n ] u=\begin {bmatrix} k_1 & k_2 \end {bmatrix} \begin {bmatrix} i \\ n \end {bmatrix} u=[k1k2][in]
转速跟踪状态空间模型改写:
e = n − n r , e ˙ = n ˙ − n ˙ r e=n-n_r, \dot e=\dot n-\dot n_r e=nnr,e˙=n˙n˙r
[ i ˙ e ˙ ] = [ − R L − C e ϕ L 30 C T ϕ π J 0 ] [ i e ] + [ 1 L 0 ] u + [ − C e Φ L n r d ( t ) − n ˙ r ] \begin{bmatrix} \dot i\\ \dot e \end{bmatrix}=\begin{bmatrix} -\frac{R}{L} & -\frac{C_e\phi}{L}\\ \frac{30C_T\phi}{\pi J} & 0 \end{bmatrix}\begin{bmatrix} i\\ e \end{bmatrix}+\begin{bmatrix} \frac{1}{L}\\ 0 \end{bmatrix}u+\begin{bmatrix} -\frac{C_e\Phi}{L}n_r\\ d(t)-\dot n_r \end{bmatrix} [i˙e˙]=[LRπJ30CTϕLCeϕ0][ie]+[L10]u+[LCeΦnrd(t)n˙r]
i ˙ , e ˙ = 0 \dot i,\dot e=0 i˙,e˙=0,系统平衡点是 i = 0 , e = − n r i=0,e=-n_r i=0,e=nr(假设 d ( t ) , n ˙ r = 0 d(t),\dot n_r=0 d(t),n˙r=0),为了移动平衡点到 e = 0 e=0 e=0,令u的加上移动平衡点的项:
u = K x + C e Φ n r u=Kx+C_e\Phi n_r u=Kx+CeΦnr
Simulink模型图:
开环系统和闭环状态反馈系统模型图

运行结果:
开环和状态反馈系统响应曲线

滑模控制

还是采用上面的转速跟踪误差模型
[ i ˙ e ˙ ] = [ − R L − C e ϕ L 30 C T ϕ π J 0 ] [ i e ] + [ 1 L 0 ] u + [ − C e Φ L n r d ( t ) − n ˙ r ] \begin{bmatrix} \dot i\\ \dot e \end{bmatrix}=\begin{bmatrix} -\frac{R}{L} & -\frac{C_e\phi}{L}\\ \frac{30C_T\phi}{\pi J} & 0 \end{bmatrix}\begin{bmatrix} i\\ e \end{bmatrix}+\begin{bmatrix} \frac{1}{L}\\ 0 \end{bmatrix}u+\begin{bmatrix} -\frac{C_e\Phi}{L}n_r\\ d(t)-\dot n_r \end{bmatrix} [i˙e˙]=[LRπJ30CTϕLCeϕ0][ie]+[L10]u+[LCeΦnrd(t)n˙r]
s = c i + e = c i + n − n r s=ci+e=ci+n-n_r s=ci+e=ci+nnr
s ˙ = c i ˙ + n ˙ − n ˙ r = c ( − R L i − C e Φ L n + 1 L u + 30 C T Φ π J i + d ( t ) − n ˙ r ) \dot s=c\dot i+\dot n-\dot n_r=c(-\frac{R}{L}i-\frac{C_e\Phi}{L}n+\frac{1}{L}u+\frac{30C_T\Phi}{\pi J}i+d(t)-\dot n_r) s˙=ci˙+n˙n˙r=c(LRiLCeΦn+L1u+πJ30CTΦi+d(t)n˙r)
定义李雅普诺夫函数为 V ( s ) = 1 2 s 2 V(s)=\frac{1}{2}s^2 V(s)=21s2
V ˙ = s s ˙ \dot V=s\dot s V˙=ss˙
u = L c [ ( c R L − 30 C T Φ π J ) i + c C e Φ L n + n ˙ r − K s − ϵ s g n ( s ) ] u=\frac{L}{c}[(\frac{cR}{L}-\frac{30C_T\Phi}{\pi J})i+\frac{cC_e\Phi}{L}n+\dot n_r-Ks-\epsilon sgn(s)] u=cL[(LcRπJ30CTΦ)i+LcCeΦn+n˙rKsϵsgn(s)]
在这里插入图片描述
在这里插入图片描述
sfun_stablizesys_SMC.m文件内容:

function [sys, x0, str, ts] = sfun_stablizesys_SMC(t, x, u, flag)
switch flag,
    case 0,
        [sys, x0, str, ts] = mdlInitializeSizes;
    case 3,
        sys = mdlOutputs(t, x, u);
    case {2,4,9}
        sys = [];
    otherwise,
        error(['Unhandled flag = ', num2str(flag)]);
end
function [sys, x0, str, ts] = mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates  = 0;   %需要求解的状态变量个数,控制器表达式不需要
sizes.NumDiscStates  = 0;
sizes.NumOutputs     = 2;
sizes.NumInputs      = 4;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 0;
sys = simsizes(sizes);
x0  = [];
str = [];
ts  = [];

function sys=mdlOutputs(t,x,u)  % u = [i,n,nr,dnr]
c = 10;
k = 0.001;
L = 0.0085;
J = 0.0044;
R = 2.875;
CT = 6.685;
Ce = 0.7;
FI = 1;
K = 30;
epsilon = 2.171;

e = u(2)-u(3);
s = c*u(1)+e;
sys(1) = s;
sys(2) = L/c*(u(4)+(c*R/L-30*CT*FI/pi/J)*u(1)+c*Ce*FI/L*u(2)-K*s-epsilon*sign(s));

位置跟踪

假设位置 z = ∫ 0 t k n   d t , z ˙ = k n z=\int_{0}^{t} kn\,dt,\dot z=kn z=0tkndt,z˙=kn
模型变为:
[ z ˙ i ˙ n ˙ ] = [ 0 0 k 0 − R L − C e ϕ L 0 30 C T ϕ π J 0 ] [ z i n ] + [ 0 1 L 0 ] u + [ 0 0 d ( t ) ] \begin{bmatrix} \dot z \\ \dot i \\ \dot n \end{bmatrix}=\begin{bmatrix} 0 & 0 & k \\ 0 & -\frac{R}{L} & -\frac{C_e\phi}{L}\\ 0 & \frac{30C_T\phi}{\pi J} & 0 \end{bmatrix}\begin{bmatrix} z \\ i \\ n \end{bmatrix}+\begin{bmatrix} 0 \\ \frac{1}{L}\\ 0 \end{bmatrix}u+\begin{bmatrix} 0 \\ 0\\ d(t) \end{bmatrix} z˙i˙n˙ = 0000LRπJ30CTϕkLCeϕ0 zin + 0L10 u+ 00d(t)
A = [ 0 0 0.001 0 − 338.2352 − 82.3529 0 14508 0 ] , B = [ 0 117.65 0 ] , Q c = [ B A B A 2 B ] , r a n k    Q c = 3 A=\begin{bmatrix} 0 & 0 & 0.001 \\ 0 & -338.2352 & -82.3529 \\ 0 &14508 & 0 \end {bmatrix},B=\begin{bmatrix} 0 \\ 117.65 \\ 0 \end{bmatrix},Q_c=\begin {bmatrix} B & AB & A^2B \end{bmatrix},rank\;Q_c=3 A= 0000338.2352145080.00182.35290 ,B= 0117.650 ,Qc=[BABA2B],rankQc=3,因此系统完全能控。
A的特征值为0, − 169.1 ± j 1079.9 -169.1\pm j1079.9 169.1±j1079.9,需要通过状态反馈进行系统镇定。
K = [ k 1 k 2 k 3 ] K=[k_1 \quad k_2 \quad k_3] K=[k1k2k3],配置到-170,-170,-170,
∣ λ I − ( A + B K ) ∣ = ( λ + 170 ) 3 |\lambda I-(A+BK)|=(\lambda+170)^3 λI(A+BK)=(λ+170)3
解得 k 1 = − 2878.4 ,    k 2 = − 1.46 ,    k 3 = 0.6492. k_1=-2878.4,\;k_2=-1.46,\;k_3=0.6492. k1=2878.4,k2=1.46,k3=0.6492.
u = [ k 1 k 2 k 3 ] [ z i n ] u=[k_1 \quad k_2 \quad k_3]\begin{bmatrix} z \\ i \\ n \end{bmatrix} u=[k1k2k3] zin
镇定后系统状态都能收敛到0:
在这里插入图片描述
加入位置跟踪:
[ e ˙ i ˙ n ˙ ] = [ 0 0 k 0 − R L − C e ϕ L 0 30 C T ϕ π J 0 ] [ e i n ] + [ 0 1 L 0 ] u + [ − z ˙ r 0 d ( t ) ] \begin{bmatrix} \dot e \\ \dot i \\ \dot n \end{bmatrix}=\begin{bmatrix} 0 & 0 & k \\ 0 & -\frac{R}{L} & -\frac{C_e\phi}{L}\\ 0 & \frac{30C_T\phi}{\pi J} & 0 \end{bmatrix}\begin{bmatrix} e \\ i \\ n \end{bmatrix}+\begin{bmatrix} 0 \\ \frac{1}{L}\\ 0 \end{bmatrix}u+\begin{bmatrix} -\dot z_r \\ 0\\ d(t) \end{bmatrix} e˙i˙n˙ = 0000LRπJ30CTϕkLCeϕ0 ein + 0L10 u+ z˙r0d(t)
u = [ k 1 k 2 k 3 ] [ e i n ] = [ k 1 k 2 k 3 ] [ z i n ] − k 1 z r u=[k_1 \quad k_2 \quad k_3]\begin{bmatrix} e \\ i \\ n \end{bmatrix}=[k_1 \quad k_2 \quad k_3]\begin{bmatrix} z \\ i \\ n \end{bmatrix}-k_1z_r u=[k1k2k3] ein =[k1k2k3] zin k1zr
在这里插入图片描述
在这里插入图片描述

改变初值依然是很小的误差
在这里插入图片描述
加入负载 T L = 30 T_L=30 TL=30,抗干扰效果也不错
在这里插入图片描述
滑模轨迹跟踪:

时滞

状态反馈镇定加Smith预估器控制方案:

时滞存在于输出量和反馈量,由于史密斯预估器只适用于单入单出系统,所以将位置作为输出变量,对于位置的反馈单独分离出来。Plant的模型中先不包含位置的反馈量,只镇定 i , n i,n i,n两个状态变量:
[ z ˙ i ˙ n ˙ ] = [ 0 0 k 0 − R L − C e ϕ L 0 30 C T ϕ π J 0 ] [ z i n ] + [ 0 1 L 0 ] u + [ 0 0 d ( t ) ] \begin{bmatrix} \dot z \\ \dot i \\ \dot n \end{bmatrix}=\begin{bmatrix} 0 & 0 & k \\ 0 & -\frac{R}{L} & -\frac{C_e\phi}{L}\\ 0 & \frac{30C_T\phi}{\pi J} & 0 \end{bmatrix}\begin{bmatrix} z \\ i \\ n \end{bmatrix}+\begin{bmatrix} 0 \\ \frac{1}{L}\\ 0 \end{bmatrix}u+\begin{bmatrix} 0 \\ 0\\ d(t) \end{bmatrix} z˙i˙n˙ = 0000LRπJ30CTϕkLCeϕ0 zin + 0L10 u+ 00d(t)
u 1 = [ 0 k 2 k 3 ] [ z i n ] u_1=[0 \quad k_2 \quad k_3]\begin{bmatrix} z \\ i \\ n \end{bmatrix} u1=[0k2k3] zin
Smith预估器反并联的控制器为:
u 2 = − k 1 ( z r − z ) u_2=-k_1(z_r-z) u2=k1(zrz)
Smith预估器:
在这里插入图片描述

在这里插入图片描述

滑模控制加Smith预估器

状态反馈时滞控制

定理:
在这里插入图片描述
K = Y W − 1 , P = W − 1 K=YW^{-1},P=W^{-1} K=YW1,P=W1
代入镇定后的三阶系统,解得K=[4392.9 -26079948404.99 0.5462]
代入未镇定的三阶系统,解得K=[-0.0766 -8293531604.51 -3.1232]
仿真结果都不稳定。
在这里插入图片描述

时滞存在于状态变量中,电流传给转速时有时滞
[ e ˙ i ˙ n ˙ ] = [ 0 0 k 0 − R L − C e Φ L 0 0 0 ] [ e i n ] [ 0 0 0 0 0 0 0 30 C T Φ π J 0 ] [ e ( t − τ ) i ( t − τ ) n ( t − τ ) ] + [ 0 1 L 0 ] u + [ − z ˙ r 0 d ( t ) ] \begin{bmatrix} \dot e \\ \dot i \\ \dot n \end{bmatrix}=\begin{bmatrix} 0 & 0 & k \\ 0 & -\frac{R}{L} & -\frac{C_e\Phi}{L}\\ 0 & 0 & 0 \end{bmatrix}\begin{bmatrix} e \\ i \\ n \end{bmatrix} \begin{bmatrix} 0&0&0 \\ 0&0&0 \\ 0& \frac{30C_T\Phi}{\pi J}&0 \end{bmatrix} \begin{bmatrix} e(t-\tau) \\ i(t-\tau) \\ n(t-\tau) \end{bmatrix}+\begin{bmatrix} 0 \\ \frac{1}{L}\\ 0 \end{bmatrix}u+\begin{bmatrix} -\dot z_r \\ 0\\ d(t) \end{bmatrix} e˙i˙n˙ = 0000LR0kLCeΦ0 ein 00000πJ30CTΦ000 e(tτ)i(tτ)n(tτ) + 0L10 u+ z˙r0d(t)

状态反馈那个实验必须用三个LMI解出来的K才能镇定系统,单用第一个LMI解出来的K不能使系统稳定,很奇怪

参考资料

  1. ​【现代控制理论笔记】——第三章:状态反馈
    ​https://blog.csdn.net/weixin_52077466/article/details/135450369
  2. 【Advanced控制理论】8.5_线性控制器设计_轨迹跟踪(Follow a Desired Path) https://www.bilibili.com/video/BV1HW411s7YC/?spm_id_from=333.999.0.0&vd_source=20d896eca3aa8b68c67b5e833330db7d
  3. 滑模变结构控制仿真实验设计——刘金琨著
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值