卷积神经网络反向传播理论推导

                                   
               

本文首先简单介绍CNN的结构,并不作详细介绍,本文只要讲解CNN的反向传播,CNN的反向传播,其实并不是大多所说的和全连接的BP类似,CNN的全连接部分的BP是与它相同,但是CNN中卷积--池化、池化--卷积部分的BP是不一样的,仔细推导,还是有很多细节地方需要思考的,比如1、在前向传播的过程中,卷积层的输入,是通过卷积核与前一层的输出特征图卷积得来的,那么在反向传播的过程中该怎么处理?这个就与全连接神经网络不同了。2、由于在前向传播的时候,池化层会对前一层卷积层进行放缩,那么从池化层到卷积层BP的时候,小尺度的池化层怎么把误差反传到大尺度的卷积层(这里的大小是一般而言,卷积层一张特征图经池化之后尺度会变小)?这个就与全连接神经网络完全不同!3、公式推导中,或者某些库的函数实现过程中,卷积核为什么要翻转180度?ps.本文是根据汇报的PPT更改,里面有很多图和文字就直接截图了,里面的每一个公式都是我和F.Tao讨论和推导过的,如有错误欢迎指正。

    还是先首先贴一张CNN结构图吧,下面这张图个人认为是结构很清晰的,每一层是什么,以及卷积层+池化层和全连接层在做什么工作都表达的很好,来源Google搜索。

    要明白卷积操作是用来干嘛的,是用来提取特征的,反向传播的意义又是什么?因为初始的时候卷积核的值都是随机设定的,我们可以根据前向传播的预测结果,进行误差分析,不断地修改卷积核的值,使得更好的提取特征,就是反向传播的意义。

如果你觉得这篇文章看起来稍微还有些吃力,或者想要系统地学习人工智能,那么推荐你去看床长人工智能教程。非常棒的大神之作,教程不仅通俗易懂,而且很风趣幽默。点击这里可以查看教程。


    对卷积和池化操作直观的理解就如下图:

    对应的网络连接结构图如下所示:
    这里要说明两个概念,一个是卷积,一个是协相关,这两个概念是很多人都不清楚的,以至于把协相关当成了卷积来使用。


    那么卷积层对输入的卷积操作就变成了如下:

    下面一下CNN中的几个注意的点:

   可以从下图中找出对应的连接方式(注:下面的L包含了卷积和池化两个部分,但不妨碍理解):

    下面三张图截取自3D CNN,为了更加详细说明每一层是什么,每一层那个是特征图,那些是神经元。




前向传播:
    这里只说CNN前向传播不同于全连接前向传播的部分,即:输入层到卷积层和卷积层到池化层。

1、输入层到卷积层的前向传播
输入层到卷积层,采用的是局部连接,参数共享,卷积操作的方式,进行计算的,有个最好的说明就是cs231n笔记中的gif图,现展示如下:

    图中有两个卷积核,w0和w1,注:这两个卷积核是已经翻转过的,然后进行协相关操作。由于输入的是3个通道的图片,因此每个卷积核也必须是3个通道的。所谓局部连接、权值共享都在这幅图上体现的淋淋尽致,非常好的表达。
    现作理论推导:



2、卷积层到池化层的前向传播:

    前向传播比较简单,介绍就到这里,下面分析反向传播算法:
    CNN的反向传播其实与全连接神经网络的反向传播有很大不同,只是从最后的输出层到最后一个卷积层的池化层的误差计算方式是相同的,但是从池化层到卷积层,卷积层到输出层(or池化层)的误差传播方式与全连接网络是大不相同的。











参考:
                     
  • 4
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 卷积神经网络是一种深度学习模型,它的核心思想是使用卷积层对图像进行特征提取。 卷积层的计算过程是:对输入的图像使用一个小的卷积核(又称滤波器)进行卷积运算,然后将卷积结果加上一个偏置项,再使用激活函数进行非线性变换。具体来说,假设我们有一个输入图像 $X$,卷积核 $W$ 和偏置项 $b$,那么卷积层的输出 $Y$ 就是: $$Y=f(X*W+b)$$ 其中 $*$ 表示卷积运算,$f(\cdot)$ 表示激活函数。 卷积运算本质上是一种二维卷积运算,它对输入图像的每一个子区域进行卷积运算。假设输入图像 $X$ 的大小是 $H\times W$,卷积核 $W$ 的大小是 $h\times w$,那么卷积层输出 $Y$ 的大小就是 $(H-h+1)\times (W-w+1)$。 卷积神经网络通常包含多个卷积层,每一层都会对图像进行特征提取。为了使特征提取更有效,卷积神经网络还会使用池化层进行特征降维和缩放不变性的处理。池化层的计 ### 回答2: 卷积神经网络(Convolutional Neural Networks,简称CNN)是一种广泛应用于图像识别、自然语言处理等领域的深度学习模型。其背后有一些数学推导作为基础。 卷积操作是CNN的核心部分之一。其数学推导基于信号处理中的卷积运算。卷积操作用于提取输入数据中的特征。在CNN中,输入数据被表示为多维张量,可以是二维的图像或更高维的数据。卷积运算通过将一个卷积核(也称为滤波器)与输入数据进行滑动操作,计算出一系列特征映射。卷积核是一个小的可学习参数矩阵,它在滑动操作中与输入数据的局部区域作矩阵乘法运算并求和,最终得到一个输出值。通过改变卷积核的参数,卷积运算可以捕捉到不同的特征。 卷积神经网络的另一个重要概念是池化操作(Pooling)。池化操作用于减小特征映射的空间尺寸,降低计算量并增强特征的鲁棒性。常见的池化操作有最大值池化和平均值池化。数学推导中,池化操作实际上是对特征映射进行下采样操作,通过保留主要信息而减少冗余信息。 卷积神经网络中的非线性激活函数也是其重要组成部分。常见的激活函数有Sigmoid函数、ReLU函数等。激活函数引入非线性变换,使得网络能够学习非线性关系。数学推导中,激活函数通过对线性输出进行非线性映射,将输入传递给下一层。 此外,卷积神经网络还包括反向传播算法进行训练。反向传播算法的数学推导基于链式法则。通过计算损失函数对网络参数的梯度,可以使用梯度下降等优化方法来更新网络参数,实现对网络的训练。 综上所述,卷积神经网络理论数学推导包括卷积操作、池化操作、激活函数以及反向传播算法。这些推导为CNN提供了强大的建模能力,使得其在图像识别、自然语言处理等领域取得了许多重要的成果。 ### 回答3: 卷积神经网络(Convolutional Neural Network,CNN)是一种广泛应用于图像识别和模式识别领域的深度学习模型。它的理论数学推导基于信号处理领域的卷积运算和神经网络的反向传播算法。 首先,卷积神经网络的核心操作是卷积运算。卷积运算可以看作是一种滤波操作,它通过将输入信号与一个权重矩阵(卷积核)进行卷积计算,得到输出特征图。这一操作可以有效地提取输入信号的局部特征,并保持空间关系的稳定性。 在卷积神经网络中,卷积层是其中最重要的组成部分。其数学推导基于卷积运算的定义,通过将输入特征图与卷积核进行逐元素相乘,并求和得到输出特征图的每个像素值。卷积层可以通过多个卷积核提取多种不同的特征,从而实现更复杂的图像识别任务。 另外,卷积神经网络还包括池化层和全连接层。池化层通过降采样操作,将特征图的尺寸减小,提取更加抽象的特征。全连接层则将池化层输出的特征进行展平,并通过反向传播算法调整权重,最终完成分类或回归任务。 为了进行卷积神经网络的训练,需要定义一个损失函数来衡量模型预测结果与真实标签之间的差异。通常使用交叉熵损失函数作为卷积神经网络的损失函数。通过梯度下降算法和反向传播算法,可以根据损失函数对卷积神经网络的参数进行优化,提高模型的性能。 总的来说,卷积神经网络理论数学推导基于信号处理中的卷积运算和神经网络的反向传播算法。通过卷积层、池化层和全连接层的组合,可以提取输入信号的特征,从而完成图像识别和模式识别等任务。而损失函数和优化算法则用于训练卷积神经网络,使其能够更好地预测和分类。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值