深度学习
文章平均质量分 92
秃头选拔赛形象大使
一名计算机在读学生。
让改变发生,与优秀同行。
展开
-
基于深度学习的恶意代码分类(三)
基于深度学习的恶意代码分类(三)序言下面我们继续对本次报告涉及的相关概念、模型、算法等理论知识进行理论知识梳理。Word2VecWord2Vec是一个用来计算词向量的框架,可以在百万数量级的词典和上亿的数据集上进行训练,得到词的连续分布向量表示,依据上下文实现对单词的预测。作为一个浅层的神经网络。Word2Vec 算法的的输出层引入 Huffman 树,与传统的 Softmax 算法相比,极大的减小了计算复杂度,使得学习和训练的速度大大提高。而词向量是 Word2Vec 模型的一个副产品,可以通过词原创 2021-03-23 19:48:43 · 1659 阅读 · 3 评论 -
基于深度学习的恶意代码分类(二)
基于深度学习的恶意代码分类(二)序言本节内容我们将介绍本课题中涉及的相关概念、模型、算法等理论知识。首先介绍词向量相关概念及其变体模型;然后介绍本文研究中所涉及到的卷积神经网络的网络结构及其训练过程;最后介绍改进的分类模型所要融合的循环神经网络及其变体相关知识。词向量在自然语言处理任务中,将文本符号化是解决问题的第一步。其中,one-hot编码表示是一种比较直观而简洁的表示方法,在早期,经常被用于字词的向量化表示。one-hot 表示的核心思想是将文本中每个词语表示为一个高维稀疏向量,每一维代表词表原创 2021-03-16 21:48:00 · 806 阅读 · 2 评论 -
基于深度学习的恶意代码分类(一)
基于深度学习的恶意代码分类1. 基于传统机器学习算法的恶意代码分类方法恶意代码分类主要有两种应用:恶意代码检测和恶意代码家族聚类。恶意代码检测的目的是判断未知代码是否是恶意代码,即将未知代码分为良性代码和恶意代码两类。恶意代码家族聚类是以恶意代码为数据集,依据特征相似性和家族类别标签将恶意代码分为多类。恶意代码分类任务主要有两个过程:特征提取过程和分类过程。其中,特征提取过程通常采用传统的恶意代码分析方法进行提取;分类过程主要分为两个步骤:分类模型的构建和分类模型的使用:在第一个步骤中,将提取原创 2021-03-15 20:42:02 · 5122 阅读 · 7 评论 -
基于深度学习的简单二分类(招聘信息的真假)
招聘数据真假分类此次机器学习课程大作业-招聘数据真假分类,是一个二分类问题。训练集中共有14304个样本,每个样本有18个特征,目标是判断不含有标签的招聘信息的真假性。利用Pandas读取训练集和测试集后,进行数据预处理,检查并修正数据中的错误值,补充缺失值,通过使用sklearn中的TfidfVectorizer构建词汇表(特征词表)时考虑了词语文档频次,可以通过设置min_df和max_df来实现通过文档频次进行特征选择。之后,对离散型特征进行特征工程处理,对连续型特征进行特征缩放(归一化)。建立多原创 2021-01-12 20:52:35 · 2336 阅读 · 7 评论 -
ptorch.cat理解
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Mar原创 2020-12-26 09:53:21 · 164 阅读 · 0 评论 -
利用百度AI studio平台了解深度学习CNN 人脸识别
深度学习CNN(人脸识别)使用百度飞桨框架,GPU运行,jupyter科普视频https://www.bilibili.com/video/BV1cK411G7y8对深度学习的CNN的简单了解下面是代码的整个结构目录:【1.用来存放自定义图片的目录——/home/aistudio/data/data2394/images/face】【2.用来存放图像列表的目录——/home/aistudio/data/data2394/face/】【3.model_vgg用来存放vgg网络训练的模型】【4原创 2020-12-16 10:52:03 · 1631 阅读 · 0 评论 -
tensorflow:归一化和批归一化,激活函数,及dropout
在深度学习中,optimizer就是优化函数,这部分相当于机器学习中,自己写的优化函数部分,直接利用SGD:随机梯度下降算法激活函数的作用引入非线性因素,使得升级网络更为复杂。归一化:训练模型不会因为部分畸形数据而导致训练模型出现差错批归一化:每一层的激活值都进行归一化的过程过拟合解释:(在train的表现很好,在valid的表现不是很好)。原因:参数过多,记住样本,不能泛化。...原创 2020-02-25 22:30:57 · 2513 阅读 · 2 评论 -
深度学习 loss function 和cost function的区别
Loss function衡量误差的函数,计算的是一个样本之间的误差,也就是目标函数和真实值之间的差,一个训练集内。cost function衡量的是所有的训练集的误差总和的平均值,cost的存在与否和目标函数的的参数结果没有较大的关系。...原创 2020-02-24 21:17:49 · 4532 阅读 · 0 评论 -
Tensorflow2.0回调函数的使用
前章提示:为什么要使数据归一化:归一化的目的就是使在训练过程中,训练模型不会因为部分畸形数据而导致训练模型出现差错,从而保证准确性,因此也被称为标准化,一般来说转换成[ 0,1]是概率类,转化为[-1,1]是坐标轴类型。回调函数Tensorboard,earlystopping,ModelCheckpointEarlyStopping使用方法:keras.callbacks.Earl...原创 2020-02-23 23:47:09 · 1496 阅读 · 0 评论 -
深度学习基本大纲
【人】先判断函数的集合(建立模型)——>【人】评价的好坏(损失函数)——>【机器】(参数学习)原创 2020-02-15 18:58:12 · 449 阅读 · 0 评论 -
TF 回调函数之 ProfilerNotRunningError: Cannot stop profiling. No profiler is running.报错和tensorboard不能打开问题
回调函数Tensorboard,earlystopping,ModelCheckpointEarlyStopping使用方法:keras.callbacks.EarlyStopping( monitor=‘val_loss’, min_delta=0, patience=0, verbose=0, mode=‘auto’, baseline=None, restore_best_weigh...原创 2020-02-23 00:15:49 · 1217 阅读 · 0 评论 -
Tensoflow2.0学习笔记 之 分类模型
Tensoflow2.0tf,keras(构建和训练模型的核心高级API)单输入单输出的sequential顺序模型函数式APIeager模式eager模式直接迭代和直观调试自定义tf.GradientTape求解梯度,自定义训练逻辑tf.data 加载图片和结构化数据...原创 2020-02-20 00:45:25 · 522 阅读 · 0 评论