深度学习 loss function 和cost function的区别

本文深入探讨了机器学习中损失函数与成本函数的概念。损失函数用于衡量单个样本预测值与真实值之间的误差,而成本函数则计算整个训练集中所有样本误差的平均值。理解两者差异对于优化模型至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Loss function

衡量误差的函数,计算的是一个样本之间的误差,也就是目标函数和真实值之间的差,一个训练集内。

cost function

衡量的是所有的训练集的误差总和的平均值,cost的存在与否和目标函数的的参数结果没有较大的关系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值