Pycharm远程连接服务器(2023-11-9)

本文详细介绍了如何在已经安装Anaconda的Ubuntu服务器上使用PyCharm进行远程开发,包括创建虚拟环境、安装PyTorch及其依赖,配置SSH连接,以及在PyCharm中测试代码。
部署运行你感兴趣的模型镜像

安装流程

1.ubuntu创建虚拟环境(已经安装了Anaconda到服务器中)
2.pycharm配置远程开发环境

1.ubuntu创建虚拟环境(已经安装了Anaconda到服务器中)

连接ubuntu服务器

ssh ubuntu@10.0.166.7
这里我用的是学校的工作站服务器
你只需要把后面的ip换成你自己的服务器就可以了

在这里插入图片描述

创建虚拟环境

conda create -n pytorch python=3.8
上面的pytorch就是你虚拟环境的名字(python3.8比较稳定{我做的项目里面有一个只支持python3.8},当然如果不是有特别需求,用最新版3.10或者3.11也可以)

在这里插入图片描述
在这里插入图片描述

输入y继续
下图为安装成功页面

在这里插入图片描述

激活虚拟环境

conda activate pytorch

在这里插入图片描述

安装pytorch包

进入pytorch官网可以选择你对应的系统会自动生成链接

在这里插入图片描述

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
复制到你的服务器中 运行程序
而后输入y回车 继续

在这里插入图片描述
在这里插入图片描述

安装完成

在这里插入图片描述

检验是否安装成功并退出服务器

在这里插入图片描述

2.Pycharm配置远程开发环境

打开解释器

文件 -->设置–>项目–>Python解释器

在这里插入图片描述
在这里插入图片描述

添加ssh解释器–>SSH–>添加

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

输入ip用户名和密码

在这里插入图片描述

测试连接

在这里插入图片描述
在这里插入图片描述

一直下一步

修改远端路径(改成你ubuntu需要的项目位置)

在这里插入图片描述

最后是这样的即可创建(注:均选择现有环境即可,因为之前创建过了)

在这里插入图片描述

测试连接

在这里插入图片描述

应用即可

在这里插入图片描述

跑代码测试

可以看到图中的地址是Ubuntu地址,远程跑代码成功。(这个是我用另一个项目测试的)
注意:源代码地址不要链接到其他地方。比如说,我跑的项目代码和数据集不在同一个目录下,数据集可能在别的地方,这种情况就会引发路径错误。

在这里插入图片描述

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

<think>好的,我现在需要帮助用户解决如何在PyCharm中设置远程SSH连接并运行YOLOv1模型的问题。首先,我得回想一下自己之前对PyCharm远程配置的了解。记得PyCharm专业版支持SSH远程解释器,社区版可能不行,这点要提醒用户。 接下来,用户提到了引用[1]中的内容,里面有具体的SSH命令,比如ssh -p 15660 root@connect.yza1.seetacloud.com。这意味着用户可能已经租借了GPU服务器,并获得了连接信息。需要指导用户在PyCharm中添加这个SSH配置。 首先,用户需要安装PyCharm专业版。然后,配置SSH连接的部分,应该在设置中的Deployment里添加服务器信息,包括主机名、端口、用户名和密码。这部分要详细说明步骤,可能还需要测试连接是否成功。 然后,同步代码到远程服务器,可能需要配置映射路径,确保本地代码能自动上传到远程目录。这里要提醒用户注意路径的正确性,避免文件找不到的问题。 接下来配置远程Python解释器,这里可能需要指定远程Python环境的路径,比如/usr/bin/python3或者虚拟环境中的路径。用户运行的是YOLOv1模型,可能需要安装依赖库,比如PyTorch或者TensorFlow,所以需要指导用户在远程服务器上安装这些依赖,可以通过PyCharm的终端或者SSH命令行操作。 另外,运行配置的设置也很重要,用户需要创建运行配置,指定脚本路径和参数,可能还需要设置工作目录到代码所在的远程路径。如果YOLOv1需要数据集,用户需要确保数据集也在远程服务器上,或者通过同步上传。 用户可能遇到的问题包括SSH连接失败、依赖缺失、路径错误等,需要给出常见问题的解决方法,比如检查端口、密码是否正确,防火墙设置,或者手动安装依赖库。 最后,生成的相关问题要围绕用户可能的后续需求,比如性能优化、调试技巧、GPU监控、环境隔离等。这些能帮助用户进一步使用远程开发环境。 总结步骤:安装专业版→配置Deployment→配置远程解释器→同步代码→安装依赖→创建运行配置→处理常见问题。需要确保每个步骤清晰,用户能一步步跟着操作。</think>### 如何在 PyCharm 中设置远程 SSH 连接并运行 YOLOv1 模型 #### 1. 准备工作 - **PyCharm 专业版**:确保使用 PyCharm Professional(社区版不支持远程功能)[^1]。 - **服务器信息**:获取远程服务器的 SSH 连接信息(如引用[1]中的示例): $$ \text{主机:connect.yza1.seetacloud.com,端口:15660,用户名:root,密码/密钥} $$ - **代码与数据**:准备好 YOLOv1 模型代码和数据集(需同步到远程服务器)。 --- #### 2. 配置远程 SSH 连接 1. **打开 Deployment 配置** - 进入 `Tools > Deployment > Configuration`,点击 `+` 添加新服务器,选择 **SFTP 协议**。 - 输入服务器信息: ``` Host: connect.yza1.seetacloud.com Port: 15660 User name: root Authentication: Password 或 Key(根据服务器设置) ``` - 点击 `Test Connection` 测试连通性[^1]。 2. **映射本地与远程路径** - 在 `Mappings` 标签页中,设置本地项目路径与远程服务器路径(如 `/root/project`),确保代码同步方向正确。 --- #### 3. 配置远程 Python 解释器 1. **添加远程解释器** - 进入 `File > Settings > Python Interpreter`,点击齿轮图标选择 `Add`。 - 选择 `SSH Interpreter`,填写服务器信息(与 Deployment 相同)。 - 指定远程 Python 路径(如 `/usr/bin/python3` 或虚拟环境路径)。 2. **同步依赖库** - 若 YOLOv1 依赖库(如 PyTorch、OpenCV)未安装,通过 PyCharm 的 **Terminal** 连接服务器执行: ```bash pip install torch opencv-python ``` --- #### 4. 运行 YOLOv1 模型 1. **同步代码到服务器** - 右键项目根目录,选择 `Deployment > Upload to...` 将代码上传至服务器。 2. **创建运行配置** - 进入 `Run > Edit Configurations`,点击 `+` 添加 Python 配置。 - 设置脚本路径为远程 YOLOv1 入口文件(如 `train.py`)。 - 选择远程 Python 解释器,指定工作目录为远程代码路径。 3. **启动训练/推理** - 点击运行按钮,PyCharm 会通过 SSH 在远程服务器执行代码,并输出日志到本地控制台。 --- #### 5. 常见问题解决 | 问题类型 | 解决方法 | |-----------------------|--------------------------------------------------------------------------| | **SSH 连接失败** | 检查端口、密码、防火墙设置;确认服务器 SSH 服务已开启[^1]。 | | **依赖库缺失** | 通过 PyCharm 终端手动安装:`pip install -r requirements.txt`。 | | **数据集路径错误** | 在远程服务器相同路径存放数据,或在代码中修改为绝对路径。 | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值