Prometheus
什么是Prometheus
Prometheus是由SoundCloud开发的开源监控报警系统和时序列数据库(TSDB)。Prometheus使用Go语言开发,是Google BorgMon监控系统的开源版本。
2016年由Google发起Linux基金会旗下的原生云基金会(Cloud Native Computing Foundation), 将Prometheus纳入其下第二大开源项目。
Prometheus目前在开源社区相当活跃。
Prometheus和Heapster(Heapster是K8S的一个子项目,用于获取集群的性能数据。)相比功能更完善、更全面。Prometheus性能也足够支撑上万台规模的集群。
Prometheus的特点
- 多维度数据模型。
- 灵活的查询语言。
- 不依赖分布式存储,单个服务器节点是自主的。
- 通过基于HTTP的pull方式采集时序数据。
- 可以通过中间网关进行时序列数据推送。
- 通过服务发现或者静态配置来发现目标服务对象。
- 支持多种多样的图表和界面展示,比如Grafana等。
Prometheus监控基本原理
Prometheus的基本原理是通过HTTP协议周期性抓取被监控组件的状态,任意组件只要提供对应的HTTP接口就可以接入监控。不需要任何SDK或者其他的集成过程。这样做非常适合做虚拟化环境监控系统,比如VM、Docker、Kubernetes等。输出被监控组件信息的HTTP接口被叫做exporter 。目前互联网公司常用的组件大部分都有exporter可以直接使用,比如Varnish、Haproxy、Nginx、MySQL、Linux系统信息(包括磁盘、内存、CPU、网络等等)。
Prometheus服务过程
Prometheus Daemon 负责定时去目标上抓取metrics(指标)数据,每个抓取目标需要暴露一个http服务的接口给它定时抓取。Prometheus支持通过配置文件、文本文件、Zookeeper、Consul、DNS SRV Lookup等方式指定抓取目标。Prometheus采用PULL的方式进行监控,即服务器可以直接通过目标PULL数据或者间接地通过中间网关来Push数据。
Prometheus在本地存储抓取的所有数据,并通过一定规则进行清理和整理数据,并把得到的结果存储到新的时间序列中。
Prometheus通过PromQL和其他API可视化地展示收集的数据。Prometheus支持很多方式的图表可视化,例如Grafana、自带的Promdash以及自身提供的模版引擎等等。Prometheus还提供HTTP API的查询方式,自定义所需要的输出。
PushGateway支持Client主动推送metrics到PushGateway,而Prometheus只是定时去Gateway上抓取数据。
Alertmanager是独立于Prometheus的一个组件,可以支持Prometheus的查询语句,提供十分灵活的报警方式。
Prometheus 三大套件
- Server 主要负责数据采集和存储,提供PromQL查询语言的支持。
- Alertmanager 警告管理器,用来进行报警。
- Push Gateway 支持临时性Job主动推送指标的中间网关。
Grafana
简介
Grafana是一款用Go语言开发的开源数据可视化工具,可以做数据监控和数据统计,带有告警功能。目前使用grafana的公司有很多,如paypal、ebay、intel等。
特点
①可视化:快速和灵活的客户端图形具有多种选项。面板插件为许多不同的方式可视化指标和日志。
②报警:可视化地为最重要的指标定义警报规则。Grafana将持续评估它们,并发送通知。
③通知:警报更改状态时,它会发出通知。接收电子邮件通知。
④动态仪表盘:使用模板变量创建动态和可重用的仪表板,这些模板变量作为下拉菜单出现在仪表板顶部。
⑤混合数据源:在同一个图中混合不同的数据源!可以根据每个查询指定数据源。这甚至适用于自定义数据源。
⑥注释:注释来自不同数据源图表。将鼠标悬停在事件上可以显示完整的事件元数据和标记。
⑦过滤器:过滤器允许您动态创建新的键/值过滤器,这些过滤器将自动应用于使用该数据源的所有查询。
什么是 node_exporter
举个例子,如果你有一台服务器,你想要获取它运行时的参数,比如当前的CPU负载、系统负载、内存消耗、硬盘使用量、网络IO等,那么你就可以在服务器上运行一个node_exporter,它能帮你收集好这些参数,并且暴露出一个HTTP接口,以便你访问查询。
搭建
环境准备
1.在开始配置之前请下载以下几个软件:
- prometheus
- grafana
- node_exporter
2.安装
准备两台服务器,一台用作安装prometheus和grafana,一台用作放置exporter组件。建立应用文件夹,将相关软件上传至服务器。
192.168.249.131 prometheus,grafana
192.168.249.129 exporter
prometheus
使用如下shell命令进行安装并启动
tar zxvf prometheus-2.13.1.linux-amd64.tar.gz
mv prometheus-2.13.1.linux-amd64 prometheus
cd prometheus
nohup ./prometheus &
启动完成后,用浏览器打开http://192.168.249.131:9090进行访问,效果如下:
grafana
使用如下shell命令进行安装并启动
tar grafana-6.4.3.linux-amd64.tar.gz
cd grafana-6.4.3
nohup ./grafana-server &
启动完成后,用浏览器打开http://192.168.249.131:3000进行访问,默认账号密码为admin/admin,初次登陆需要修改密码,修改密码并登陆效果如下:
node_exporter
使用如下shell命令进行安装并启动
tar zxvf node_exporter-0.18.1.linux-amd64.tar.gz
mv node_exporter-0.18.1.linux-amd64 node_exporter
nohup ./node_exporter &
node exporter默认使用9100端口,可以使用–web.listen-address=":9200"指定端口号。
启动完成后,用浏览器打开http://192.168.249.129:9100/进行访问,显示效果如下:
配置prometheus
进入prometheus安装目录,修改prometheus.yml文件,增加监听job server-192.168.249.129,完整配置如下:
# my global config
global:
scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
# scrape_timeout is set to the global default (10s).
# Alertmanager configuration
alerting:
alertmanagers:
- static_configs:
- targets:
# - alertmanager:9093
rule_files:
# - "first_rules.yml"
# - "second_rules.yml"
scrape_configs:
# The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
- job_name: 'prometheus'
static_configs:
- targets: ['localhost:9090']
- job_name: '192.168.249.129'
static_configs:
- targets: ['192.168.249.129:9100']
配置完成后重启prometheus,查看监听状态。
grafana配置prometheus数据源
去官网寻找对应的表盘,我们选择node exporter监控看板
在grafana中在导入表盘
查看监控效果