题意
给定n台电脑,可以按照不同的顺序打开电脑,如果第i-1台电脑和第i+1台电脑被打开,第i台电脑将自动打开(在没有被开启的情况下),有多少种不同的方案来打开所有电脑。
输入
输入两个数,表示电脑个数,和答案的取模数(质数)总数小于400
输出
所有的方案数
思路
比赛的时候一直在想通过前面一个数选和不选来转移方程,一直搞不定
题解是通过最后多少个数都是手动打开的,来转移方程
如果是通过最后连续k个数都是手动打开的,方案数为 2k-1
如果先打开第一个数,后面的数必须按顺序打开情况为 C(k - 1,0)
如果先打开第二个数,后面的数必须按顺序打开,前面的可以任选为 C(k - 1,1)
同样的打开第三个数,后面的按顺序,前面两个数也必须按逆序打开,后面的必须按顺序打开,但是前面的可以插入在后面的里面,也是根据隔板法原理答案C(k - 1,2)
之后的同理 答案为C(k - 1,i - 1);
所以总方案数为2k-1.
转移函数为 f[i][j]
表示以第i个数结尾的,总共打开j个电脑的方案数
转移方程 f[i][j] = Σ(f[i - k - 1][j - k] * C(j,k) * 2k-1
表示通过最后连续k个都不是自动打开的,也就意味之第i - k是自动打开,第i - k - 1不是自动打开的,前面i - k - 1的顺序和后面的顺序是不会产生影响的,所以他们是可以在不影响内部元素的相对顺序下交叉排序,也就等价于剩下k + 1个坑需要放j - k 个箱子,通过隔板法确认方案数为C(j,k)
代码
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define int long long
const int N = 410,M = 850;
int f[N][N];
int c[M][M];
int pow2[M];
int n,mod;
signed main(){
cin >> n >> mod;
// cout << n <<' ' << mod<< endl;;
for(int i = 0;i < M;i++){
for(int j = 0;j <= i;j++){
if(j == 0) c[i][j] = 1;
else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
}
}
pow2[0] = 1;
for(int i = 1;i < M;i++) pow2[i] = pow2[i - 1] * 2 % mod;
for(int i = 1;i <= n;i++){
f[i][i] = pow2[i - 1];
for(int j = 1;j < i;j++){
for(int k = 1;k < j;k++){
f[i][j] = (f[i][j] + f[i - k - 1][j - k] * c[j][k] % mod * pow2[k - 1] % mod) % mod;
}
}
}
int ans = 0;
for(int i = 1;i <= n;i++)
ans = (ans + f[n][i]) % mod;
cout <<ans <<endl;
return 0;
}