数据结构与算法之二叉树的先序、中序以及后序遍历

什么是遍历

  1. 遍历:按照某种次序把所有结点 都访问一遍

  2. 层次遍历:基于树的层次特性确定的次序规则

    1. 先/中/后序遍历:基于树的递归特性确定的次序规则

image.png

image.png

二叉树的遍历

二叉树的递归特性:

  1. 要么就是个空二叉树
  2. 要么就是有“根节点+左子树+右子树”组成的二叉树

遍历方式

  1. 先序遍历:根左右(NLR)
  2. 中序遍历:左根右(LNR)
  3. 后序遍历:左右根(LRN)

下面是一些遍历方式例图

image.png

image.png

image.png

先序遍历

操作过程:

  1. 若二叉树,则什么都不做;

  2. 若二叉树非空:

    1. 访问根节点
    2. 先序遍历左子树
    3. 先序遍历右子树
/**
 * 二叉树的前序遍历:根左右
 * @param biTree 二叉树
 */
void preOrder(BiTree biTree) {
    //递归结束
    if (biTree == NULL) {
        return;
    }
    printf("%d\t", biTree->data);
    //左子树,因为子树和根都是一样的数据结构所以可以直接递归
    preOrder(biTree->lChild);
    //右子树,因为子树和根都是一样的数据结构所以可以直接递归
    preOrder(biTree->rChild);
}

流程展示(下面中序遍历和后序遍历类似)

VeryCapture_20220530152410.gif

中序遍历

操作过程:

  1. 若二叉树,则什么都不做;

  2. 若二叉树非空:

    1. 先序遍历左子树
    2. 访问根节点
    3. 先序遍历右子树
/**
 * 二叉树的中序遍历:左根右
 * @param biTree 二叉树
 */
void midOrder(BiTree biTree) {
    //递归结束
    if (biTree == NULL) {
        return;
    }
    //左子树,因为子树和根都是一样的数据结构所以可以直接递归
    midOrder(biTree->lChild);
    //根节点data打印
    printf("%d\t", biTree->data);
    //右子树,因为子树和根都是一样的数据结构所以可以直接递归
    midOrder(biTree->rChild);
}

后序遍历

操作过程:

  1. 若二叉树,则什么都不做;

  2. 若二叉树非空:

    1. 先序遍历左子树
    2. 先序遍历右子树
    3. 访问根节点
/**
 * 二叉树的中序遍历:左根右
 * @param biTree 二叉树
 */
void postOrder(BiTree biTree) {
    //递归结束
    if (biTree == NULL) {
        return;
    }
    //左子树,因为子树和根都是一样的数据结构所以可以直接递归
    postOrder(biTree->lChild);
    //右子树,因为子树和根都是一样的数据结构所以可以直接递归
    postOrder(biTree->rChild);
    //根节点data打印
    printf("%d\t", biTree->data);
}

总结

image.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

five-five

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值