无监督学习之关联规则分析(—):基本概念总结

本文介绍了关联规则分析的基本概念,如项、项集、支持度、置信度和提升度,用于理解购物篮分析。通过这些概念,可以发现商品间的关联关系,帮助制定销售策略。关联规则中的频繁项集和强关联规则是分析的重点,常用于大数据场景。
摘要由CSDN通过智能技术生成

一、关联规则分析(一)

关联规则分析也称为购物篮分析,早期是为了发现超市销售数据中不同商品的关联关系,可以帮助超市了解客户的购买模式和习惯,以便于制定更好的销售计划。可以求出当a数据出现时b数据出现的可能性。常用的算法有Apriori,FP-Tree,Eclat,灰色关联算法,本篇主要介绍关联规则的一些基本概念和参数。
首先介绍一些基本概念

1.项:

超市用户购买数据库中所保存的所购买的产品称之为项,例如面包,矿泉水,都属于项。

2.项集:

一次所购买东西的总和叫做项集,例如我今天去超市买了:{方便面,火腿肠,可乐},这是我今天购买的项集,根据项集中所包含的项数,可以称为K项集,K为项集中的项数,例如{方便面,火腿肠,可乐}就可叫为3—项集,而我去超市购买商品就成了一个事务。

3.前项——后项:

假如所求规则为:{方便面}——{火腿肠} 则方便面称之为前项,火腿肠称之为后项。

4.支持度计数:

所求关联规则商品出现在几个项集当中的次数称为他的支持度计数,例如,今天超市只有我和我的同学同时购买了方便面和火腿肠,那么方便面的支持度计数为2。

5.支持度:

支持度:某一规则同时发生的概率,支持度等于支持度计数除以总的事务数,例如今天超市有100人买东西,但只有我

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值