一、关联规则分析(一)
关联规则分析也称为购物篮分析,早期是为了发现超市销售数据中不同商品的关联关系,可以帮助超市了解客户的购买模式和习惯,以便于制定更好的销售计划。可以求出当a数据出现时b数据出现的可能性。常用的算法有Apriori,FP-Tree,Eclat,灰色关联算法,本篇主要介绍关联规则的一些基本概念和参数。
首先介绍一些基本概念
1.项:
超市用户购买数据库中所保存的所购买的产品称之为项,例如面包,矿泉水,都属于项。
2.项集:
一次所购买东西的总和叫做项集,例如我今天去超市买了:{方便面,火腿肠,可乐},这是我今天购买的项集,根据项集中所包含的项数,可以称为K项集,K为项集中的项数,例如{方便面,火腿肠,可乐}就可叫为3—项集,而我去超市购买商品就成了一个事务。
3.前项——后项:
假如所求规则为:{方便面}——{火腿肠} 则方便面称之为前项,火腿肠称之为后项。
4.支持度计数:
所求关联规则商品出现在几个项集当中的次数称为他的支持度计数,例如,今天超市只有我和我的同学同时购买了方便面和火腿肠,那么方便面的支持度计数为2。
5.支持度:
支持度:某一规则同时发生的概率,支持度等于支持度计数除以总的事务数,例如今天超市有100人买东西,但只有我