机器学习学习笔记(9)----测试logistic回归模型

在《机器学习学习笔记(8)----logistic回归模型》文章中,我们推导出了logistic回归模型的梯度计算的代数公式,为了便于编程计算,我们将其转换成矩阵形式,并得出logistic回归模型的梯度下降迭代公式:

损失函数计算公式的矩阵表示如下:

这样,实现logistic回归模型的批量梯度下降方法的代码如下(gdlogistic.py,源码参考自《Python机器学习算法:原理,实现与案例》):

import numpy as np

class GDLogisticRegression:

    def __init__(self, n_iter=1000, eta=1e-4, tol=None):
    
        # 训练迭代次数
        self.n_iter = n_iter
        
        # 学习率
        self.eta = eta
        
        # 误差变化阈值
        self.tol = tol
        
        # 模型参数w(训练时初始化)
        self.w = None
    
    def _preprocess_data_X(self, X):
        '''数据预处理'''
        
        # 扩展X,添加x0列设置为1
        m, n = X.shape
        X_ = np.empty((m, n + 1))
        X_[:, 0] = 1
        X_[:, 1:] = X
        
        return X_
        
    def _loss(self, y, y_pred):
        '''损失函数计算'''
        return -(1.0/y.size)*(np.matmul(y.T, np.log(y_pred))+np.matmul((1 - y.T), np.log(1-y_pred)))

    def _gradient(self, X, y, y_pred):
        '''计算梯度'''
        return np.matmul(X.T, y_pred - y)/y.size
    
    def _sigmoid(self, z):
        return 1.0/(1.0+np.exp(-z))
    
    def _predict(self, X, w):
        '''h(x)函数 :预测y=1的概率'''
        z = np.matmul(X, w)
        return self._sigmoid(z)
        
    def _gradient_decent(self, w, X, y):
        '''梯度下降算法'''
        
        # 若用户指定tol,则启动早期停止法
        if self.tol is not None:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值