1 什么是神经网络
1.1 基本结构
说明:
- 通常一个神经网络由一个input layer,多个hidden layer和一个output layer构成。
- 图中圆圈可以视为一个神经元(又可以称为感知器)
- 设计神经网络的重要工作是设计hidden layer,及神经元之间的权重
- 添加少量隐层获得浅层神经网络SNN;隐层很多时就是深层神经网络DNN
1.2 从逻辑回归到神经元
LinearRegression模型:
sigmoid函数:
LR可以理解为如下结构:
所以逻辑回归是一个单层感知器(没有隐层)结构。
如果你觉得这篇文章看起来稍微还有些吃力,或者想要系统地学习人工智能,那么推荐你去看床长人工智能教程。非常棒的大神之作,教程不仅通俗易懂,而且很风趣幽默。点击这里可以查看教程。
2 为什么需要神经网络
首先,神经网络应用在分类问题中效果很好。 工业界中分类问题居多。