matplotlib.pyplot.imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None, vmin=None, vmax=None, origin=None, extent=None, shape=, filternorm=1, filterrad=4.0, imlim=, resample=None, url=None, \*, data=None, \*\*kwargs)
参数:此方法接受以下描述的参数:
- X:此参数是图像的数据。
- cmap:此参数是颜色图实例或注册的颜色图名称。
- norm:此参数是Normalize实例,将数据值缩放到规范的颜色图范围[0,1]以映射到颜色
- vmin, vmax:这些参数本质上是可选的,它们是颜色栏范围。
- alpha:此参数是颜色的强度。
- aspect:此参数用于控制轴的纵横比。
- interpolation:此参数是用于显示图像的插值方法。
- origin:此参数用于将数组的[0,0]索引放置在轴的左上角或左下角。
- resample:此参数是用于类似的方法。
- extent:此参数是数据坐标中的边界框。
- filternorm:此参数用于防颗粒图像调整大小过滤器。
- filterrad:此参数是具有半径参数的滤镜的滤镜半径。
- url:此参数设置创建的AxesImage的url。
返回值:这将返回以下内容:
- image:这将返回AxesImage
interplotation解释:
可为:‘none’,‘nearest’,‘bilinear’,‘bicubic’,‘spline16’, ‘spline36’, ‘hanning’, ‘hamming’,‘hermite’,‘kaiser’,‘quadric’,‘catrom’,‘gaussian’,‘bessel’,‘mitchell’, ‘sinc’,‘lanczos’
该博客详细介绍了matplotlib库中imshow函数的用法,包括参数如颜色图(cmap)、数据规范(norm)、颜色强度(alpha)、纵横比(aspect)等。它还讨论了不同的插值方法,如'nearest'、'bilinear'等,以及如何通过extent参数设定数据坐标范围。此外,博客提到了调整图像大小时的抗颗粒过滤选项。
1283

被折叠的 条评论
为什么被折叠?



