python中plt线性插值、平滑显示图像、热力图等

这篇文章展示了如何使用Python的matplotlib,numpy和scipy库进行二维插值和平滑图像显示。通过interp2d函数实现线性插值,然后用imshow创建平滑的热力图。另外,还演示了使用pcolormesh创建彩虹色和普通热力图的方法。
摘要由CSDN通过智能技术生成

直接平滑显示: 

import matplotlib.pyplot as plt
import numpy as np
from scipy import interpolate

x = np.array([2,4,6,8,10])
y = np.array([1,2,3,4])

z = np.array([[95,95,95,95,95],
              [80,80,80,80,80],
              [70,70,70,70,70],
              [100,100,100,100,100]])

fig, axe = plt.subplots()
ax0 = axe.imshow(z, origin="lower", cmap="viridis_r", interpolation='bicubic')
plt.colorbar(ax0)
plt.show()

插值且平滑显示:

import matplotlib.pyplot as plt
import numpy as np
from scipy import interpolate

x = np.array([2,4,6,8,10])
y = np.array([1,2,3,4])

z = np.array([[95,95,95,95,95],
              [80,80,80,80,80],
              [70,70,70,70,70],
              [100,100,100,100,100]])

interpolant = interpolate.interp2d(x, y, z.ravel(), kind="linear")

xlin = np.linspace(0, 10, 100)
ylin = np.linspace(0, 10, 100)
zhat = interpolant(xlin, ylin)

fig, axe = plt.subplots()
ax1 = axe.imshow(zhat.T, origin="lower", cmap="jet", interpolation='bicubic')
plt.colorbar(ax1)

ticks_x = np.linspace((100/5)/2,100-(100/5)/2,5)
ticks_y = np.linspace((100/4)/2,100-(100/4)/2,4)
plt.xticks(ticks=ticks_x, labels=[2,4,6,8,10])
plt.yticks(ticks=ticks_y, labels=[1,2,3,4])
plt.show()

使用热力图显示:

import numpy as np
import matplotlib.pyplot as plt

if __name__ == '__main__':
    x = np.array(([2, 4, 6, 8, 10]))
    y = np.array(([1, 2, 3, 4]))
    x_r, y_r = np.meshgrid(x, y)

    z = np.array([[95, 95, 95, 95, 95],
                  [80, 80, 80, 80, 80],
                  [70, 70, 70, 70, 70],
                  [100, 100, 100, 100, 100]])

    c = plt.pcolormesh(x_r, y_r, z, cmap='jet', shading='gouraud')# 彩虹热力图
    # c = plt.pcolormesh(x_r, y_r, z, cmap='viridis_r')# 普通热力图
    plt.colorbar(c, label='AUPR')
    plt.xlabel('x')
    plt.ylabel('y')
    plt.show()

Python,`plt.show()`是matplotlib库用于显示图像的函数。如果调用`plt.show()`后图像没有显示,可能有以下几个原因: 1. 后台绘图:如果你在一个支持后台绘图的环境(例如Jupyter Notebook或JupyterLab)工作,通常不需要显式调用`plt.show()`,图像会直接显示在单元格。尝试移除`plt.show()`看是否能够显示图像。 2. GUI后端问题:有时候可能是因为matplotlib的GUI后端没有正确设置导致图像无法显示。可以尝试设置合适的后端,例如在使用matplotlib时指定后端: ```python import matplotlib matplotlib.use('TkAgg') # 或者其他支持的后端 import matplotlib.pyplot as plt # ... 你的绘图代码 plt.show() ``` 3. 运行环境问题:如果你是在某些特定的IDE或者文本编辑器运行代码,可能会遇到图像无法显示的问题。确保你的开发环境支持图形显示,或者尝试在命令行终端运行你的Python脚本。 4. 代码执行完成太快:在某些情况下,如果代码执行得太快,可能在图像绘制之前脚本就已经结束执行了,导致没有足够的时间来显示图像。可以在`plt.show()`之后添加一些延时来测试是否是这个问题: ```python import time plt.show() time.sleep(10) # 延时10秒 ``` 5. matplotlib版本问题:如果你的matplotlib库版本过旧或存在bug,也可能导致显示问题。考虑更新到最新版本的matplotlib库: ```shell pip install --upgrade matplotlib ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清纯世纪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值