基于深度学习的图像分类或识别系统(含全套项目+PyQt5界面)

目录

一、项目界面

二、代码实现

1、数据集结构

2、设置需要模型的训练参数和指定数据集路径

3、网络代码

4、训练代码

5、评估代码

6、结果显示

三、项目代码


一、项目界面

二、代码实现

1、数据集结构

每一个文件夹对应一个类别的数据

2、设置需要模型的训练参数和指定数据集路径

# 数据名字标签
label_names = {0:"daisy",
               1:"dandelion",
               2:"rose",
               3:"sunflower",
               4:"tulip",
               }

# 类别数量,根据label_names标签名自动得出
num_classes = len(label_names)

# 重采样大小。如果无则填None
re_size = (28,28)

# 训练集地址,默认即可
train_path = r"./data/train"
# 验证集地址,默认即可
val_path = r"./data/val"
# 测试集地址,默认即可
test_path = r"./data/test"


# 图像后缀
img_ = "jpg"

# 批量大小
batch_size = 64

# 结果保存地址
save_results = r"./results"

# 学习率
lr = 0.001

# 迭代次数
epochs = 20


# ----------划分数据集参数-----------
# 确定将数据集划分为训练集,验证集,测试集的比例
train_pct = 0.5
valid_pct = 0.1
test_pct = 0.4

# 确定原图像数据集路径。默认即可
dataset_dir = r"./data/data"  # 原始数据集路径
# 确定数据集划分后保存的路径
split_dir = r"./data"         # 划分后保存路径
3、网络代码

该网络基于残差模型修改

import torch
import torch.nn as nn
import torchvision.models as models


class resnet18(nn.Module):
    def __init__(self, num_classes=5, pretrained=False):
        super(resnet18, self).__init__()

        # 加载ResNet-18模型
        self.model = models.resnet18(pretrained=pretrained)
        # print(self.model)

        # 更改全连接
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清纯世纪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值