100道面试必会算法-33-下一个排列

100道面试必会算法-33-下一个排列

整数数组的一个 排列 就是将其所有成员以序列或线性顺序排列。

  • 例如,arr = [1,2,3] ,以下这些都可以视作 arr 的排列:[1,2,3][1,3,2][3,1,2][2,3,1]

整数数组的 下一个排列 是指其整数的下一个字典序更大的排列。更正式地,如果数组的所有排列根据其字典顺序从小到大排列在一个容器中,那么数组的 下一个排列 就是在这个有序容器中排在它后面的那个排列。如果不存在下一个更大的排列,那么这个数组必须重排为字典序最小的排列(即,其元素按升序排列)。

  • 例如,arr = [1,2,3] 的下一个排列是 [1,3,2]
  • 类似地,arr = [2,3,1] 的下一个排列是 [3,1,2]
  • arr = [3,2,1] 的下一个排列是 [1,2,3] ,因为 [3,2,1] 不存在一个字典序更大的排列。

给你一个整数数组 nums ,找出 nums 的下一个排列。

必须 原地 修改,只允许使用额外常数空间。

示例 1:

输入:nums = [1,2,3]
输出:[1,3,2]

示例 2:

输入:nums = [3,2,1]
输出:[1,2,3]

示例 3:

输入:nums = [1,1,5]
输出:[1,5,1]

问题描述: 给定一个整数数组,要求计算出比当前排列大的下一个排列。

解题思路:

  1. 从后往前遍历数组,找到第一个不满足递减的数字位置 pos
  2. 如果未找到需要交换的位置 pos,表示数组已为最大排列,直接翻转整个数组。
  3. 若找到 pos,则从后往前找到第一个大于 nums[pos] 的数进行交换,并翻转 pos 之后的部分。
题目分析解题关键点:

例如 2, 6, 3, 5, 4, 1 这个排列, 我们想要找到下一个刚好比他大的排列,于是可以从后往前看 我们先看后两位 4, 1 能否组成更大的排列,答案是不可以,同理 5, 4, 1也不可以 直到3, 5, 4, 1这个排列,因为 3 < 5, 我们可以通过重新排列这一段数字,来得到下一个排列 因为我们需要使得新的排列尽量小,所以我们从后往前找第一个比3更大的数字,发现是4 然后,我们调换34的位置,得到4, 5, 3, 1这个数列 因为我们需要使得新生成的数列尽量小,于是我们可以对5, 3, 1进行排序,可以发现在这个算法中,我们得到的末尾数字一定是倒序排列的,于是我们只需要把它反转即可 最终,我们得到了4, 1, 3, 5这个数列 完整的数列则是2, 6, 4, 1, 3, 5

从后往前找第一个[i -1] < [i],然后再从后往前找首个大于[i-1]的进行交换,再把[i][end]倒序。

可视化
以求 12385764 的下一个排列为例:

image.png

首先从后向前查找第一个相邻升序的元素对 (i,j)。这里 i=4,j=5,对应的值为 5,7:

image.png

然后在 [j,end) 从后向前查找第一个大于 A[i] 的值 A[k]。这里 A[i] 是 5,故 A[k] 是 6:

image.png

将 A[i] 与 A[k] 交换。这里交换 5、6:

image.png

这时 [j,end) 必然是降序,逆置 [j,end),使其升序。这里逆置 [7,5,4]:

image.png

因此,12385764 的下一个排列就是 12386457。

最后再可视化地对比一下这两个相邻的排列(橙色是蓝色的下一个排列):

image.png

算法实现:

class Solution {

    // 寻找下一个排列
    public void nextPermutation(int[] nums) {
        if (nums.length<1) return; // 如果数组为空,直接返回

        int pos=-1; // 用于记录交换位置

        // 从后往前遍历数组,找到第一个不满足递减的数字位置
        for (int i=nums.length-1; i>0; i--) {
            if (nums[i-1] < nums[i]) {
                pos = i-1;
                break;
            }
        }

        // 如果未找到需要交换的位置,表示数组已为最大排列,直接翻转整个数组
        if (pos == -1) {
            revere(nums, 0);
            return;
        }

        // 从后往前找到第一个大于nums[pos]的数进行交换,并翻转pos之后的部分
        for (int i = nums.length-1; i > pos; i--) {
            if (nums[i] > nums[pos]) {
                swapj(nums, pos, i);
                revere(nums, pos+1);
                break;
            }
        }

    }

    // 翻转数组指定范围
    private void revere(int[] nums, int i) {
        for (int j = i, k = nums.length-1; j < k; j++, k--) {
            swapj(nums, j, k);
        }
    }

    // 交换数组中两个位置的元素
    private void swapj(int[] nums, int j, int k) {
        int t = nums[j];
        nums[j] = nums[k];
        nums[k] = t;
    }
}

算法分析:

  • 时间复杂度:O(n),其中 n 为数组长度。
  • 空间复杂度:O(1)。

示例:


int[] nums = {1, 2, 3};
nextPermutation(nums);
// 此时 nums 变为 {1, 3, 2}

总结:

  • 时间复杂度:O(n),其中 n 为数组长度。
  • 空间复杂度:O(1)。

示例:


int[] nums = {1, 2, 3};
nextPermutation(nums);
// 此时 nums 变为 {1, 3, 2}

总结:

这类题目的关键在于理解如何寻找下一个排列的规律,以及如何通过交换和翻转操作得到下一个排列。算法的实现并不复杂,但需要仔细考虑边界条件和数组操作的细节

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值