100道面试必会算法-33-下一个排列
整数数组的一个 排列 就是将其所有成员以序列或线性顺序排列。
- 例如,
arr = [1,2,3]
,以下这些都可以视作arr
的排列:[1,2,3]
、[1,3,2]
、[3,1,2]
、[2,3,1]
。
整数数组的 下一个排列 是指其整数的下一个字典序更大的排列。更正式地,如果数组的所有排列根据其字典顺序从小到大排列在一个容器中,那么数组的 下一个排列 就是在这个有序容器中排在它后面的那个排列。如果不存在下一个更大的排列,那么这个数组必须重排为字典序最小的排列(即,其元素按升序排列)。
- 例如,
arr = [1,2,3]
的下一个排列是[1,3,2]
。 - 类似地,
arr = [2,3,1]
的下一个排列是[3,1,2]
。 - 而
arr = [3,2,1]
的下一个排列是[1,2,3]
,因为[3,2,1]
不存在一个字典序更大的排列。
给你一个整数数组 nums
,找出 nums
的下一个排列。
必须 原地 修改,只允许使用额外常数空间。
示例 1:
输入:nums = [1,2,3]
输出:[1,3,2]
示例 2:
输入:nums = [3,2,1]
输出:[1,2,3]
示例 3:
输入:nums = [1,1,5]
输出:[1,5,1]
问题描述: 给定一个整数数组,要求计算出比当前排列大的下一个排列。
解题思路:
- 从后往前遍历数组,找到第一个不满足递减的数字位置
pos
。 - 如果未找到需要交换的位置
pos
,表示数组已为最大排列,直接翻转整个数组。 - 若找到
pos
,则从后往前找到第一个大于nums[pos]
的数进行交换,并翻转pos
之后的部分。
题目分析解题关键点:
例如 2, 6, 3, 5, 4, 1
这个排列, 我们想要找到下一个刚好比他大的排列,于是可以从后往前看 我们先看后两位 4, 1
能否组成更大的排列,答案是不可以,同理 5, 4, 1
也不可以 直到3, 5, 4, 1
这个排列,因为 3 < 5
, 我们可以通过重新排列这一段数字,来得到下一个排列 因为我们需要使得新的排列尽量小,所以我们从后往前找第一个比3
更大的数字,发现是4 然后,我们调换3
和4
的位置,得到4, 5, 3, 1
这个数列 因为我们需要使得新生成的数列尽量小,于是我们可以对5, 3, 1
进行排序,可以发现在这个算法中,我们得到的末尾数字一定是倒序排列的,于是我们只需要把它反转即可 最终,我们得到了4, 1, 3, 5
这个数列 完整的数列则是2, 6, 4, 1, 3, 5
。
从后往前找第一个[i -1] < [i]
,然后再从后往前找首个大于[i-1]
的进行交换,再把[i]
到[end]
倒序。
可视化
以求 12385764 的下一个排列为例:
首先从后向前查找第一个相邻升序的元素对 (i,j)。这里 i=4,j=5,对应的值为 5,7:
然后在 [j,end) 从后向前查找第一个大于 A[i] 的值 A[k]。这里 A[i] 是 5,故 A[k] 是 6:
将 A[i] 与 A[k] 交换。这里交换 5、6:
这时 [j,end) 必然是降序,逆置 [j,end),使其升序。这里逆置 [7,5,4]:
因此,12385764 的下一个排列就是 12386457。
最后再可视化地对比一下这两个相邻的排列(橙色是蓝色的下一个排列):
算法实现:
class Solution {
// 寻找下一个排列
public void nextPermutation(int[] nums) {
if (nums.length<1) return; // 如果数组为空,直接返回
int pos=-1; // 用于记录交换位置
// 从后往前遍历数组,找到第一个不满足递减的数字位置
for (int i=nums.length-1; i>0; i--) {
if (nums[i-1] < nums[i]) {
pos = i-1;
break;
}
}
// 如果未找到需要交换的位置,表示数组已为最大排列,直接翻转整个数组
if (pos == -1) {
revere(nums, 0);
return;
}
// 从后往前找到第一个大于nums[pos]的数进行交换,并翻转pos之后的部分
for (int i = nums.length-1; i > pos; i--) {
if (nums[i] > nums[pos]) {
swapj(nums, pos, i);
revere(nums, pos+1);
break;
}
}
}
// 翻转数组指定范围
private void revere(int[] nums, int i) {
for (int j = i, k = nums.length-1; j < k; j++, k--) {
swapj(nums, j, k);
}
}
// 交换数组中两个位置的元素
private void swapj(int[] nums, int j, int k) {
int t = nums[j];
nums[j] = nums[k];
nums[k] = t;
}
}
算法分析:
- 时间复杂度:O(n),其中 n 为数组长度。
- 空间复杂度:O(1)。
示例:
int[] nums = {1, 2, 3};
nextPermutation(nums);
// 此时 nums 变为 {1, 3, 2}
总结:
- 时间复杂度:O(n),其中 n 为数组长度。
- 空间复杂度:O(1)。
示例:
int[] nums = {1, 2, 3};
nextPermutation(nums);
// 此时 nums 变为 {1, 3, 2}
总结:
这类题目的关键在于理解如何寻找下一个排列的规律,以及如何通过交换和翻转操作得到下一个排列。算法的实现并不复杂,但需要仔细考虑边界条件和数组操作的细节