集成学习三大思想

集成学习通过结合多个弱分类器创建强分类器。包括boosting(迭代优化,如Adaboost和xgboost),bagging(并行独立训练,如随机森林),以及stacking(分层优化,通过多层模型集成提升性能)。这些方法在提升模型泛化能力上展现出强大的潜力。
摘要由CSDN通过智能技术生成

集成学习(ensemble learning)

集成学习就是说将多个 “单个学习器(Individual Learner)”用某种策略来结合起来,组成一个“学习委员会(committee)”,使得整体的泛化性能得到大大提高。

首先还先需要了解两个名词“弱分类器”和“强分类器”。

“弱分类器”的分类能力不强,但它又比随机选的效果稍微好点,类似于“臭皮匠”。

“强分类器”具有很强的分类能力,也就是把特征扔给它,他能分的比较准确,算是“诸葛亮”一类的。

如果直接可以建立一个强分类器,那弱分类器实际上就是多余的,但是,这世上“绝顶聪明的诸葛亮”少之又少,反而,在某方面有才华的人很多。于是,我们更多选择用三个臭皮匠去顶诸葛亮。
接下来介绍集成学习中的三大思想(仅介绍思想)。

boost(迭代优化)

boost通常采用改变训练数据的概率分布,针对不同的训练数据分布调用弱学习算法学习一组弱分类器。在多次迭代的过程中,当前次迭代所用的训练数据的概率分布会依据上一次迭代的结果而调整。也就是说训练数据的各样本是有权重的,这个权重本身也会随着迭代而调整。
即每一次迭代受上一次迭代结果影响,经过一次次迭代优化,形成强分类器。例如,像Adaboost和xgboost,最后的强分类器都是弱分类器的加性组合。

bagging(并行独立)

采用“增强聚合”思想,并行是他的主要特点。即分别

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值