【LeetCode笔记】剑指 Offer 59 - II. 队列的最大值(Java、辅助队列)

题目描述

恢复打题的第二天打卡~

  • 可以说是这道最小栈的兄弟题目了,很相似
  • 总体思路还是一样,靠空间换时间
  • 也就是借助辅助队列
    在这里插入图片描述

思路 && 代码

  • 这篇题解的动图做得很好,建议结合食用。
  • 核心在于 push() 时的处理:对 maxQueue 的维护更新
  • 关于时间复杂度,max、pop 显而易见是 O(1)。
  • 至于 push,有:
    在这里插入图片描述
    也就是实现了均摊时间复杂度O(1)
class MaxQueue {
    // 用辅助队列解决,类似最小栈
    Deque<Integer> queue, max;
    public static final int emptyNum = -1;

    public MaxQueue() {
        queue = new LinkedList<>();
        max = new LinkedList<>();
    }
    
    public int max_value() {
        if(max.isEmpty()) {
            return emptyNum;
        }
        // max 队列的第一个值就是当前的最大值
        return max.peek();
    }
    
    public void push_back(int value) {
        queue.addLast(value);
        // 核心算法:
        // 1. 等于时也需要存(否则pop会出错)
        // 2. 从后往前,把前面的较小值取代(更新维护 max 队列)
        while(!max.isEmpty() && max.getLast() < value) {
            max.removeLast();
        }
        max.addLast(value);
    }
    
    public int pop_front() {
        if(queue.isEmpty()) {
            return emptyNum;
        }
        int temp = queue.removeFirst();
        // 如果取出的就是最大值,max就也pop()
        if(max.peek() == temp) {
            max.removeFirst();
        }
        return temp;
    }
}

/**
 * Your MaxQueue object will be instantiated and called as such:
 * MaxQueue obj = new MaxQueue();
 * int param_1 = obj.max_value();
 * obj.push_back(value);
 * int param_3 = obj.pop_front();
 */

二刷

  • 核心思路还是同上,就是注意队列中对比不能用 ==
class MaxQueue {   
    Deque<Integer> queue = new ArrayDeque<>();
    Deque<Integer> maxQueue = new ArrayDeque<>();

    public MaxQueue() {}
    
    public int max_value() {
        if(queue.isEmpty()) {
            return -1;
        }
        return maxQueue.element();
    }
    
    public void push_back(int value) {
        queue.offer(value);
        while(!maxQueue.isEmpty() && maxQueue.getLast() < value) {
            maxQueue.pollLast();
        }
        maxQueue.offer(value);
    }
    
    public int pop_front() {
        if(queue.isEmpty()) {
            return -1;
        }
        if(queue.element().equals(maxQueue.element())) {
            maxQueue.poll();
        }
        return queue.poll();
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值