题目描述
恢复打题的第二天打卡~
- 可以说是这道最小栈的兄弟题目了,很相似
- 总体思路还是一样,靠空间换时间~
- 也就是借助辅助队列
思路 && 代码
- 这篇题解的动图做得很好,建议结合食用。
- 核心在于 push() 时的处理:对 maxQueue 的维护更新
- 关于时间复杂度,max、pop 显而易见是 O(1)。
- 至于 push,有:
也就是实现了均摊时间复杂度O(1)
class MaxQueue {
// 用辅助队列解决,类似最小栈
Deque<Integer> queue, max;
public static final int emptyNum = -1;
public MaxQueue() {
queue = new LinkedList<>();
max = new LinkedList<>();
}
public int max_value() {
if(max.isEmpty()) {
return emptyNum;
}
// max 队列的第一个值就是当前的最大值
return max.peek();
}
public void push_back(int value) {
queue.addLast(value);
// 核心算法:
// 1. 等于时也需要存(否则pop会出错)
// 2. 从后往前,把前面的较小值取代(更新维护 max 队列)
while(!max.isEmpty() && max.getLast() < value) {
max.removeLast();
}
max.addLast(value);
}
public int pop_front() {
if(queue.isEmpty()) {
return emptyNum;
}
int temp = queue.removeFirst();
// 如果取出的就是最大值,max就也pop()
if(max.peek() == temp) {
max.removeFirst();
}
return temp;
}
}
/**
* Your MaxQueue object will be instantiated and called as such:
* MaxQueue obj = new MaxQueue();
* int param_1 = obj.max_value();
* obj.push_back(value);
* int param_3 = obj.pop_front();
*/
二刷
- 核心思路还是同上,就是注意队列中对比不能用 ==
class MaxQueue {
Deque<Integer> queue = new ArrayDeque<>();
Deque<Integer> maxQueue = new ArrayDeque<>();
public MaxQueue() {}
public int max_value() {
if(queue.isEmpty()) {
return -1;
}
return maxQueue.element();
}
public void push_back(int value) {
queue.offer(value);
while(!maxQueue.isEmpty() && maxQueue.getLast() < value) {
maxQueue.pollLast();
}
maxQueue.offer(value);
}
public int pop_front() {
if(queue.isEmpty()) {
return -1;
}
if(queue.element().equals(maxQueue.element())) {
maxQueue.poll();
}
return queue.poll();
}
}