Hadoop 中的大数据技术:MapReduce(1)

Hadoop 中的大数据技术:MapReduce(1)

第1章 MapReduce 概述

1.1 MapReduce 定义

MapReduce 是一个用于分布式计算的编程框架,它是 Hadoop 核心组件之一,主要用于开发分布式数据分析应用。

MapReduce 的主要功能是将用户编写的业务逻辑代码与默认组件相结合,形成一个完整的分布式计算程序,并能够在 Hadoop 集群上并发执行。

1.2 MapReduce 优缺点

1.2.1 优点
  1. 易于编程:用户只需要实现几个简单的接口就能完成分布式程序的开发,这使得 MapReduce 成为了非常流行的编程模型。
  2. 良好的扩展性:可以通过简单地增加硬件资源来提升计算能力。
  3. 高容错性:设计时考虑到了运行在廉价硬件上的情况,因此具备自动故障恢复的能力。
  4. 适合大规模数据处理:支持PB级别的数据量处理,可利用上千台服务器集群进行并行计算。
1.2.2 缺
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据深度洞察

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值