CCF-CSP认证考试 202212-5 星际网络 52/68分题解

更多 CSP 认证考试题目题解可以前往:CSP-CCF 认证考试真题题解


原题链接: 202212-5 星际网络

时间限制: 5.0s
内存限制: 512.0MB

问题描述

23333 23333 23333 年,在经过长时间的建设后,一个庞大的星际网络终于初具规模。星际网络共接入了 n n n 颗星球,由 m m m 颗中继卫星来实现星球之间的互联互通。所有星球之间的通信都必须经由一颗或多颗中继卫星来实现,星球本身也可以起到中继的作用,如果两颗星球的距离很远,数据可以沿“星球——中继卫星——星球——中继卫星——…——星球”的模式进行传输。

对于每一颗中继卫星而言,可以与多颗距离上较为接近的星球通信,但由于卫星结构的设计原因,通信只能单向进行。具体而言,第 i i i 颗中继卫星可以接收编号在 [ l 1 i , r 1 i ] [l_{1i},r_{1i}] [l1i,r1i] 范围内的星球发送来的数据,并向编号在 [ l 2 i , r 2 i ] [l_{2i},r_{2i}] [l2i,r2i] 范围内的星球发送数据。

数据在星际之间传输的延迟当然是惊人的。为简单起见,我们假设这一延迟只由数据经过的中继卫星决定,即数据从不同的星球发出,经同一个中继卫星,到达不同的星球,所需的延迟时间总是相同的。对于第 i i i 颗中继卫星,数据经由该中继卫星传输所需的延迟时间约为 T i T_i Ti 秒。由于这个数字实在太过巨大,而且对于星际间通信的延迟估计总是充满了各种不准确因素,我们只关心其若干位有效数字,具体而言将给出二元组 ( a i , b i ) (a_i,b_i) (ai,bi) ,表示 T i = a i × 2 b i T_i=a_i\times2^{b_i} Ti=ai×2bi。我们假设数据在其他位置的延迟均可忽略。实际传输中,数据从源星球发出,经由很多颗中继卫星和星球最终到达目的星球,则总延迟为过程中经过的所有中继卫星的延迟之和。

数据从某个星球出发到达另一个星球,其在中继卫星和星球之间所经过的传输路径可能是多种多样的。与普通的计算机网络类似,我们需要设计相应的路由算法来选择合适的传输路径。一种直观的方案是最小延迟原则,即数据总是会选择总延迟时间最小的传输路径。

星际网络建成后,工程师们希望通过类似于计算机网络中ping的方法来测试该网络。从星球A向星球B发起一次ping的经过如下:首先从星球A发送请求数据,数据经星际网络传输至星球B,星球B随即发送回复数据,经星际网络传输至星球A,星球A计算从它发出请求到收到回复的所经时间,称为此次ping的响应时间。如果星际网络结构有缺陷,使得星球A发出的请求无法到达星球B,或星球B发出的回复无法到达星球A,则星球A在等待足够长时间后会得到“请求超时”的结果。

现在需要从 1 1 1 号星球向其他所有星球依次发起一次ping,假设所有数据的传输均遵循最小延迟原则,请你计算出每次ping的响应时间。

输入格式

从标准输入读入数据。

1 1 1 行: 2 2 2 个正整数 n , m n,m n,m

接下来 m m m 行:每行 6 6 6 个非负整数 l 1 i , r 1 i , l 2 i , r 2 i , a i , b i l_{1i},r_{1i},l_{2i},r_{2i},a_i,b_i l1i,r1i,l2i,r2i,ai,bi,描述一颗中继卫星,具体含义如上所述。

输出格式

输出到标准输出中。

输出一行, n − 1 n-1 n1 个整数,第 i i i 个整数表示星球 1 1 1 向星球 i + 1 i+1 i+1 发起ping的响应时间,对 1 0 9 + 7 10^9+7 109+7 取模后输出。

特别地,如果某次ping的结果为请求超时,输出 -1。

样例 1 输入

5 5
1 2 2 3 1 2
2 2 1 1 3 0
2 3 4 5 1 1
3 3 4 4 1 0
4 4 1 2 1 0

样例 1 输出

7 6 6 -1

样例说明

1 1 1 号星球到 2 2 2 号星球的请求数据最小延迟为 4 4 4 2 2 2 号星球的回复数据最小延迟为 3 3 3

1 1 1 号星球到 3 3 3 号星球的请求数据最小延迟为 4 4 4 3 3 3 号星球的回复数据最小延迟为 2 2 2

1 1 1 号星球到 4 4 4 号星球的请求数据最小延迟为 5 5 5 4 4 4 号星球的回复数据最小延迟为 1 1 1

1 1 1 号星球到 5 5 5 号星球的请求数据最小延迟为 6 6 6 5 5 5 号星球的回复数据无法到达 1 1 1 号星球。

样例 2 输入

3 2
1 2 1 2 999999999 34
2 3 2 3 987654321 12

样例 2 输出

122094981 986235983

数据范围

对于所有数据, n ≤ 1 0 5 , m ≤ 1 0 5 , 1 ≤ l 1 i ≤ r 1 i ≤ n , 1 ≤ l 2 i ≤ r 2 i ≤ n , 1 ≤ a i ≤ 1 0 9 , 0 ≤ b i ≤ 1 0 5 n\leq 10^5, m \leq 10^5, 1\leq l_{1i} \leq r_{1i} \leq n, 1\leq l_{2i} \leq r_{2i} \leq n, 1 \leq a_i \leq 10^9, 0 \leq b_i \leq 10^5 n105,m105,1l1ir1in,1l2ir2in,1ai109,0bi105

测试点编号 n ≤ n \leq n m ≤ m \leq m b i ≤ b_i \leq bi特殊性质
1 1 1 10 10 10 10 10 10 0 0 0
2 ∼ 3 2 \sim 3 23 100 100 100 100 100 100 0 0 0
4 ∼ 5 4 \sim 5 45 1000 1000 1000 1000 1000 1000 0 0 0
6 ∼ 8 6 \sim 8 68 1 0 5 10^5 105 1 0 5 10^5 105 0 0 0 l 1 i = r 1 i , l 2 i = r 2 i l_{1i}=r_{1i}, l_{2i}=r_{2i} l1i=r1i,l2i=r2i
9 ∼ 10 9 \sim 10 910 1 0 5 10^5 105 1 0 5 10^5 105 0 0 0 l 1 i = r 1 i l_{1i}=r_{1i} l1i=r1i
11 ∼ 13 11 \sim 13 1113 1 0 5 10^5 105 1 0 5 10^5 105 0 0 0
14 ∼ 15 14 \sim 15 1415 100 100 100 100 100 100 100 100 100
16 ∼ 17 16 \sim 17 1617 1000 1000 1000 1000 1000 1000 1000 1000 1000
18 ∼ 20 18 \sim 20 1820 1 0 5 10^5 105 1 0 5 10^5 105 1 0 5 10^5 105 l 1 i = r 1 i , l 2 i = r 2 i l_{1i}=r_{1i}, l_{2i}=r_{2i} l1i=r1i,l2i=r2i
21 ∼ 22 21 \sim 22 2122 1 0 5 10^5 105 1 0 5 10^5 105 1 0 5 10^5 105 l 1 i = r 1 i l_{1i}=r_{1i} l1i=r1i
23 ∼ 25 23 \sim 25 2325 1 0 5 10^5 105 1 0 5 10^5 105 1 0 5 10^5 105

52 分题解(测试点 1~13)

前置知识:线段树优化建图 - OI Wiki

13 13 13 个测试点的 b = 0 b=0 b=0,即边权的范围是 [ 1 , 1 0 9 ] [1,10^9] [1,109],直接用 long long 做就行了。

先建立好出树和入树,对于给定的一条边 l 1 i , r 1 i , l 2 i , r 2 i , a i , b i l_{1i},r_{1i},l_{2i},r_{2i},a_i,b_i l1i,r1i,l2i,r2i,ai,bi,新建一个节点 x x x,建立从出树中在 [ l 1 i , r 1 i ] [l_{1i},r_{1i}] [l1i,r1i] 中且其父节点不在该区间中的节点编号到 x x x 的一条边,和从 x x x 到入树中在 [ l 2 i , r 2 i ] [l_{2i},r_{2i}] [l2i,r2i] 中且其父节点不在该区间中的节点编号的一条边。对建好的图跑以 1 1 1 号点为源点的 Dijkstra 算法即可求出从 1 1 1 号点到其他点的最短距离。

重新建立一张图,所有边的方向调换。即在建立好出入和入树后,对于给定的一条边 l 1 i , r 1 i , l 2 i , r 2 i , a i , b i l_{1i},r_{1i},l_{2i},r_{2i},a_i,b_i l1i,r1i,l2i,r2i,ai,bi,新建一个节点 x x x,建立从出树中在 [ l 2 i , r 2 i ] [l_{2i},r_{2i}] [l2i,r2i] 中且其父节点不在该区间中的节点编号到 x x x 的一条边,和从 x x x 到入树中在 [ l 1 i , r 1 i ] [l_{1i},r_{1i}] [l1i,r1i] 中且其父节点不在该区间中的节点编号的一条边。对建好的图跑以 1 1 1 号点为源点的 Dijkstra 算法即可求出从其他点到 1 1 1 号点的最短距离。

将两个距离相加即为答案,注意取模和不可到达的情况。

时间复杂度: O ( n log ⁡ n + m log ⁡ n log ⁡ ( m log ⁡ n ) ) \mathcal{O}(n\log n+m\log n\log(m\log n)) O(nlogn+mlognlog(mlogn))

52 分参考代码(718ms,87.85MB)

/*
    Created by Pujx on 2024/3/29.
*/
#pragma GCC optimize(2, 3, "Ofast", "inline")
#include <bits/stdc++.h>
using namespace std;
#define endl '\n'
//#define int long long
//#define double long double
using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
#define inf (int)0x3f3f3f3f3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define yn(x) cout << (x ? "yes" : "no") << endl
#define Yn(x) cout << (x ? "Yes" : "No") << endl
#define YN(x) cout << (x ? "YES" : "NO") << endl
#define mem(x, i) memset(x, i, sizeof(x))
#define cinarr(a, n) for (int i = 1; i <= n; i++) cin >> a[i]
#define cinstl(a) for (auto& x : a) cin >> x;
#define coutarr(a, n) for (int i = 1; i <= n; i++) cout << a[i] << " \n"[i == n]
#define coutstl(a) for (const auto& x : a) cout << x << ' '; cout << endl
#define all(x) (x).begin(), (x).end()
#define md(x) (((x) % mod + mod) % mod)
#define ls (s << 1)
#define rs (s << 1 | 1)
#define ft first
#define se second
#define pii pair<int, int>
#ifdef DEBUG
    #include "debug.h"
#else
    #define dbg(...) void(0)
#endif

const int N = 2e5 + 5;
//const int M = 1e5 + 5;
//const int mod = 998244353;
const int mod = 1e9 + 7;
template <typename T> T ksm(T a, i64 b) { T ans = 1; for (; b; a = 1ll * a * a, b >>= 1) if (b & 1) ans = 1ll * ans * a; return ans; }
//template <typename T> T ksm(T a, i64 b, T m = mod) { T ans = 1; for (; b; a = 1ll * a * a % m, b >>= 1) if (b & 1) ans = 1ll * ans * a % m; return ans; }

int l1[N], r1[N], l2[N], r2[N], a[N], b[N];
int n, m, t, k, q, cnt;
vector<pair<int, i64>> g[N << 2];

template <typename T> struct SegmentTree {
    struct TreeNode { int l, r, lson, rson; } tr[N << 2];
    void build(int& s, int l, int r, bool io) {
        s = ++cnt;
        tr[s].l = l, tr[s].r = r;
        if (l == r) {
            if (!io) g[l].emplace_back(cnt, 0);
            else g[cnt].emplace_back(l, 0);
            return;
        }
        int mid = l + r >> 1;
        if (l <= mid) build(tr[s].lson, l, mid, io);
        if (mid < r) build(tr[s].rson, mid + 1, r, io);
        if (!io) g[tr[s].lson].emplace_back(s, 0), g[tr[s].rson].emplace_back(s, 0);
        else g[s].emplace_back(tr[s].lson, 0), g[s].emplace_back(tr[s].rson, 0);
    }
    vector<int> v[2];
    void query(int s, int l, int r, bool io) {
        if (l <= tr[s].l && tr[s].r <= r) return v[io].emplace_back(s), void();
        int mid = tr[s].l + tr[s].r >> 1;
        if (l <= mid) query(tr[s].lson, l, r, io);
        if (mid < r) query(tr[s].rson, l, r, io);
    }
};
SegmentTree<int> T;

i64 dis[N << 2], ans[N];
bool vis[N << 2];
void dijkstra() {
    mem(dis, 0x3f); mem(vis, 0);
    dis[1] = 0;
    priority_queue<pair<i64, int>, vector<pair<i64, int>>, greater<pair<i64, int>>> pq;
    pq.push({0, 1});
    while (!pq.empty()) {
        int u = pq.top().second; pq.pop();
        if (vis[u]) continue;
        vis[u] = true;
        for (auto tem : g[u]) {
            int v = tem.first; i64 w = tem.second;
            if (!vis[v] && dis[v] > dis[u] + w) {
                dis[v] = dis[u] + w;
                pq.push({dis[v], v});
            }
        }
    }
}

void work() {
    cin >> n >> m;
    for (int i = 1; i <= m; i++) cin >> l1[i] >> r1[i] >> l2[i] >> r2[i] >> a[i] >> b[i];

    int rto, rti;
    auto calc = [&] (int* l1, int* r1, int* l2, int* r2) {
        for (int i = 1; i <= cnt; i++) g[i].clear();
        cnt = n;
        T.build(rto, 1, n, false);
        T.build(rti, 1, n, true);

        for (int i = 1; i <= m; i++) {
            T.v[0].clear(), T.v[1].clear();
            T.query(rto, l1[i], r1[i], 0);
            T.query(rti, l2[i], r2[i], 1);
            ++cnt;
            for (auto v : T.v[0]) g[v].emplace_back(cnt, a[i] * ksm(2ll, b[i]));
            for (auto v : T.v[1]) g[cnt].emplace_back(v, 0);
        }
        dijkstra();
        for (int i = 1; i <= n; i++) ans[i] += dis[i];
    };
    calc(l1, r1, l2, r2); calc(l2, r2, l1, r1);

    for (int i = 2; i <= n; i++) cout << (ans[i] < INF ? ans[i] % mod : -1) << " \n"[i == n];
}

signed main() {
#ifdef LOCAL
    freopen("C:\\Users\\admin\\CLionProjects\\Practice\\data.in", "r", stdin);
    freopen("C:\\Users\\admin\\CLionProjects\\Practice\\data.out", "w", stdout);
#endif
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int Case = 1;
    //cin >> Case;
    while (Case--) work();
    return 0;
}
/*
     _____   _   _       _  __    __
    |  _  \ | | | |     | | \ \  / /
    | |_| | | | | |     | |  \ \/ /
    |  ___/ | | | |  _  | |   }  {
    | |     | |_| | | |_| |  / /\ \
    |_|     \_____/ \_____/ /_/  \_\
*/


68 分题解(测试点 1~17)

52 52 52 分题解中,存储距离用的是 long long,但是在 14 ∼ 17 14\sim 17 1417 中边权较大,显然不行。

long long 换成压位高精,每 64 64 64 个二进制位压成一位(这样压位首先可以用 unsigned long long 存储,其次也可以较为方便的处理 × 2 b \times 2^b ×2b 的操作),使用 std::array<unsigned long long, M> 存储,[0] 为最低位,[M - 1] 为最高位。由于最大的距离大约为 1000 × 1 0 9 × 2 1000 ≈ ( 2 64 ) 16.248 1000\times 10^9\times 2^{1000}\approx(2^{64})^{16.248} 1000×109×21000(264)16.248,高精的位数选取 M = 17 M=17 M=17 位。

重载一下用到的运算符 +<>

最后输出答案 x x x 前,只要计算得出 ∑ i = 0 M − 1 x i × ( 2 64 ) i m o d    1 0 9 + 7 \sum\limits_{i=0}^{M-1}x_i\times(2^{64})^i\mod 10^9+7 i=0M1xi×(264)imod109+7 即可。

时间复杂度: O ( 17 ( n log ⁡ n + m log ⁡ n log ⁡ ( m log ⁡ n ) ) ) \mathcal{O}(17(n\log n+m\log n\log(m\log n))) O(17(nlogn+mlognlog(mlogn)))

68 分参考代码(1.937s,455.2MB)

/*
    Created by Pujx on 2024/3/29.
*/
#pragma GCC optimize(2, 3, "Ofast", "inline")
#include <bits/stdc++.h>
using namespace std;
#define endl '\n'
//#define int long long
//#define double long double
using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
#define inf (int)0x3f3f3f3f3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define yn(x) cout << (x ? "yes" : "no") << endl
#define Yn(x) cout << (x ? "Yes" : "No") << endl
#define YN(x) cout << (x ? "YES" : "NO") << endl
#define mem(x, i) memset(x, i, sizeof(x))
#define cinarr(a, n) for (int i = 1; i <= n; i++) cin >> a[i]
#define cinstl(a) for (auto& x : a) cin >> x;
#define coutarr(a, n) for (int i = 1; i <= n; i++) cout << a[i] << " \n"[i == n]
#define coutstl(a) for (const auto& x : a) cout << x << ' '; cout << endl
#define all(x) (x).begin(), (x).end()
#define md(x) (((x) % mod + mod) % mod)
#define ls (s << 1)
#define rs (s << 1 | 1)
#define ft first
#define se second
#define pii pair<int, int>
#ifdef DEBUG
    #include "debug.h"
#else
    #define dbg(...) void(0)
#endif

const int N = 2e5 + 5;
const int M = 17;
//const int mod = 998244353;
const int mod = 1e9 + 7;
template <typename T> T ksm(T a, i64 b) { T ans = 1; for (; b; a = 1ll * a * a, b >>= 1) if (b & 1) ans = 1ll * ans * a; return ans; }
//template <typename T> T ksm(T a, i64 b, T m = mod) { T ans = 1; for (; b; a = 1ll * a * a % m, b >>= 1) if (b & 1) ans = 1ll * ans * a % m; return ans; }

using BigInt = array<ui64, M>;
const i128 MOD = (i128)1 << 64;
int pw[M];
BigInt operator + (const BigInt& a, const BigInt& b) {
    BigInt ans;
    i128 g = 0;
    for (int i = 0; i < M; i++) {
        g = g + a[i] + b[i];
        ans[i] = g >= MOD ? g - MOD : g;
        g = g >= MOD;
    }
    return ans;
}
BigInt init(const i64& a, const int& b) {
    int j = b % 64, i = b / 64;
    i128 val = (i128)a << j;
    BigInt ans = BigInt();
    while (val) {
        ans[i++] = val % MOD;
        val >>= 64;
    }
    return ans;
}
int chg(const BigInt& a) {
    if (a[M - 1] == INF) return -1;
    i64 ans = 0;
    for (int i = 0; i < M; i++)
        ans = (ans + a[i] % mod * pw[i]) % mod;
    return ans;
}
bool operator < (const BigInt& a, const BigInt& b) {
    for (int i = M - 1; ~i; i--) {
        if (a[i] < b[i]) return true;
        else if (a[i] > b[i]) return false;
    }
    return false;
}
bool operator > (const BigInt& a, const BigInt& b) {
    return b < a;
}

int l1[N], r1[N], l2[N], r2[N], a[N], b[N];
int n, m, t, k, q, cnt;
vector<pair<int, BigInt>> g[N << 2];

template <typename T> struct SegmentTree {
    struct TreeNode { int l, r, lson, rson; } tr[N << 2];
    void build(int& s, int l, int r, bool io) {
        s = ++cnt;
        tr[s].l = l, tr[s].r = r;
        if (l == r) {
            if (!io) g[l].emplace_back(cnt, BigInt());
            else g[cnt].emplace_back(l, BigInt());
            return;
        }
        int mid = l + r >> 1;
        if (l <= mid) build(tr[s].lson, l, mid, io);
        if (mid < r) build(tr[s].rson, mid + 1, r, io);
        if (!io) g[tr[s].lson].emplace_back(s, BigInt()), g[tr[s].rson].emplace_back(s, BigInt());
        else g[s].emplace_back(tr[s].lson, BigInt()), g[s].emplace_back(tr[s].rson, BigInt());
    }
    vector<int> v[2];
    void query(int s, int l, int r, bool io) {
        if (l <= tr[s].l && tr[s].r <= r) return v[io].emplace_back(s), void();
        int mid = tr[s].l + tr[s].r >> 1;
        if (l <= mid) query(tr[s].lson, l, r, io);
        if (mid < r) query(tr[s].rson, l, r, io);
    }
};
SegmentTree<int> T;

struct node {
    BigInt dis; int u;
    bool operator < (const node& t) const {
        return dis > t.dis;
    }
};

BigInt dis[N << 2];
int ans[N];
bool vis[N << 2];
void dijkstra() {
    for (int i = 1; i <= cnt; i++) dis[i] = BigInt(), dis[i][M - 1] = INF, vis[i] = false;
    dis[1][M - 1] = 0;
    priority_queue<node> pq;
    pq.push({dis[1], 1});
    while (!pq.empty()) {
        int u = pq.top().u; pq.pop();
        if (vis[u]) continue;
        vis[u] = true;
        for (auto tem : g[u]) {
            int v = tem.first; BigInt& w = tem.second;
            if (!vis[v] && dis[v] > dis[u] + w) {
                dis[v] = dis[u] + w;
                pq.push({dis[v], v});
            }
        }
    }
}

void work() {
    pw[0] = 1, pw[1] = MOD % mod;
    for (int i = 2; i < M; i++) pw[i] = 1ll * pw[i - 1] * pw[1] % mod;

    cin >> n >> m;
    for (int i = 1; i <= m; i++) cin >> l1[i] >> r1[i] >> l2[i] >> r2[i] >> a[i] >> b[i];

    int rto, rti;
    auto calc = [&] (int* l1, int* r1, int* l2, int* r2) {
        for (int i = 1; i <= cnt; i++) g[i].clear();
        cnt = n;
        T.build(rto, 1, n, false);
        T.build(rti, 1, n, true);

        for (int i = 1; i <= m; i++) {
            T.v[0].clear(), T.v[1].clear();
            T.query(rto, l1[i], r1[i], 0);
            T.query(rti, l2[i], r2[i], 1);
            ++cnt;
            for (auto v : T.v[0]) g[v].emplace_back(cnt, init(a[i], b[i]));
            for (auto v : T.v[1]) g[cnt].emplace_back(v, BigInt());
        }
        dijkstra();
        for (int i = 1; i <= n; i++) {
            if (ans[i] != -1) {
                int val = chg(dis[i]);
                if (val == -1) ans[i] = -1;
                else ans[i] = (ans[i] + val) % mod;
            }
        }
    };
    calc(l1, r1, l2, r2); calc(l2, r2, l1, r1);

    for (int i = 2; i <= n; i++) cout << ans[i] << " \n"[i == n];
}

signed main() {
#ifdef LOCAL
    freopen("C:\\Users\\admin\\CLionProjects\\Practice\\data.in", "r", stdin);
    freopen("C:\\Users\\admin\\CLionProjects\\Practice\\data.out", "w", stdout);
#endif
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int Case = 1;
    //cin >> Case;
    while (Case--) work();
    return 0;
}
/*
     _____   _   _       _  __    __
    |  _  \ | | | |     | | \ \  / /
    | |_| | | | | |     | |  \ \/ /
    |  ___/ | | | |  _  | |   }  {
    | |     | |_| | | |_| |  / /\ \
    |_|     \_____/ \_____/ /_/  \_\
*/

100 分题解(无)

想不出来,也没找到官方题解,太菜了。

关于代码的亿点点说明:

  1. 代码的主体部分位于 void work() 函数中,另外会有部分变量申明、结构体定义、函数定义在上方。
  2. #pragma ... 是用来开启 O2、O3 等优化加快代码速度。
  3. 中间一大堆 #define ... 是我习惯上的一些宏定义,用来加快代码编写的速度。
  4. "debug.h" 头文件是我用于调试输出的代码,没有这个头文件也可以正常运行(前提是没定义 DEBUG 宏),在程序中如果看到 dbg(...) 是我中途调试的输出的语句,可能没删干净,但是没有提交上去没有任何影响。
  5. ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); 这三句话是用于解除流同步,加快输入 cin 输出 cout 速度(这个输入输出流的速度很慢)。在小数据量无所谓,但是在比较大的读入时建议加这句话,避免读入输出超时。如果记不下来可以换用 scanfprintf,但使用了这句话后,cinscanfcoutprintf 不能混用。
  6. main 函数和 work 函数分开写纯属个人习惯,主要是为了多组数据。
  • 6
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值