一些公式的推导证明

n 2 n^2 n2的前n次方之和的推导

S = 1 2 + 2 2 + ⋯ + n 2 S=1^2+2^2+\cdots+n^2 S=12+22++n2
利用 ( n + 1 ) 3 \left(n+1\right)^3 (n+1)3的性质进行推导:
( n + 1 ) 3 − n 3 = 3 n 2 + 3 n + 1 n 3 + ( n − 1 ) 3 = 3 ( n − 1 ) 2 + 3 ( n − 1 ) + 1 ⋯ 2 3 − 1 3 = 3 ⋅ 1 2 + 3 ⋅ 1 + 1 \begin{aligned} (n+1)^3-n^3 &= 3n^2+3n+1 \\ n^3+(n-1)^3 &= 3(n-1)^2+3(n-1)+1 \\ & \cdots \\ 2^3-1^3 &= 3\cdot1^2+3\cdot1+1 \end{aligned} (n+1)3n3n3+(n1)32313=3n2+3n+1=3(n1)2+3(n1)+1=312+31+1
将该等式前n相加,得:
∑ n [ ( n + 1 ) 3 − n 3 ] = ( n + 1 ) 3 − 1 3 ⇒ 3 ( 1 2 + 2 2 + ⋯ + n 2 ) + 3 ( 1 + 2 + ⋯ + n ) + n 故, ( 1 2 + 2 2 + ⋯ + n 2 ) = ( n + 1 ) 3 − 1 − 3 ⋅ n ( 1 + n ) 2 − n 3 = n ( n + 1 ) ( 2 n + 1 ) 6 \begin{aligned} &\sum^{n}{\left[(n+1)^3-n^3\right]} \\ &= (n+1)^3-1^3 \\ &\Rightarrow 3(1^2+2^2+\cdots+n^2)+3(1+2+\cdots+n)+n \\ \text{故,} \quad (1^2+2^2+\cdots+n^2) &= \frac{(n+1)^3-1-3\cdot\frac{n(1+n)}{2}-n}{3} \\ &= \frac{n(n+1)(2n+1)}{6} \end{aligned} 故,(12+22++n2)n[(n+1)3n3]=(n+1)3133(12+22++n2)+3(1+2++n)+n=3(n+1)3132n(1+n)n=6n(n+1)(2n+1)


关于极限的求解

1. lim ⁡ n → + ∞ ( n s i n 1 n ) n 2 = ? \text{1.} \quad \lim_{n\to+\infty}{(nsin\frac{1}{n})^{n^2}}= \quad ? 1.limn+(nsinn1)n2=?
lim ⁡ n → + ∞ ( n s i n 1 n ) n 2 = lim ⁡ n → + ∞ e n 2 l n ( n s i n 1 n ) = e lim ⁡ n → + ∞ n 2 ⋅ l n ( lim ⁡ n → + ∞ s i n 1 n 1 n ) = e + ∞ ⋅ 0 = e 0 = 1 \begin{aligned} & \lim_{n\to+\infty}{(nsin\frac{1}{n})^{n^2}} \\ &= \lim_{n\to+\infty}e^{n^2ln(nsin \frac{1}{n})} \\ &= e^{\lim_{n \to +\infty}n^2 \cdot ln(\lim_{n \to +\infty} \frac{sin\frac{1}{n}}{\frac{1}{n}})} \\ &= e^{+\infty \cdot 0} \\ &= e^0 \quad =1 \end{aligned} n+lim(nsinn1)n2=n+limen2ln(nsinn1)=elimn+n2ln(limn+n1sinn1)=e+0=e0=1
以上是错误的解法, + ∞ ⋅ 0 +\infty \cdot 0 +0是一种未定式。正确解法如下:
lim ⁡ n → + ∞ ( n s i n 1 n ) n 2 = lim ⁡ n → + ∞ e n 2 l n ( n s i n 1 n ) = e lim ⁡ n → + ∞ n 2 ⋅ l n ( n s i n 1 n ) \begin{aligned} & \lim_{n\to+\infty}{(nsin\frac{1}{n})^{n^2}} \\ &= \lim_{n\to+\infty}e^{n^2ln(nsin \frac{1}{n})} \\ &= e^{\lim_{n \to +\infty}n^2 \cdot ln(nsin\frac{1}{n})} \end{aligned} n+lim(nsinn1)n2=n+limen2ln(nsinn1)=elimn+n2ln(nsinn1)
由于 l n ( n s i n 1 n ) ∼ n s i n 1 n − 1 ln(nsin\frac{1}{n}) \sim nsin\frac{1}{n}-1 ln(nsinn1)nsinn11,故
= e lim ⁡ n → + ∞ n 2 ⋅ ( n s i n 1 n − 1 ) = e lim ⁡ n → + ∞ ( s i n 1 n − 1 n 1 n 3 ) \begin{aligned} &= e^{\lim_{n \to +\infty}n^2 \cdot \left( nsin\frac{1}{n}-1 \right)} \\ &= e^{\lim_{n \to +\infty} \left( \frac{sin\frac{1}{n}- \frac{1}{n}}{\frac{1}{n^3}} \right)} \end{aligned} =elimn+n2(nsinn11)=elimn+(n31sinn1n1)
又对于 sin ⁡ x \sin{x} sinx按照麦克劳林公式展开为 x − x 3 3 ! + o ( x 3 ) x- \cfrac{x^3}{3!} + o(x^3) x3!x3+o(x3),故
= e lim ⁡ n → + ∞ ( − 1 6 n 3 1 n 3 ) = e − 1 6 \begin{aligned} &= e^{\lim_{n \to +\infty} \left( \frac{- \frac{1}{6n^3}}{\frac{1}{n^3}} \right)} \\ &= e^{- \frac{1}{6}} \end{aligned} =elimn+(n316n31)=e61

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值