红外小目标检测之LCM与MPCM

红外小目标检测方法之LCM与MPCM

LCM(局部对比度方法)2013

一:算法流程
1 :计算局部对比度:

将一个patch分为9个cell,其中0代表目标可能会出现的区域,如下图所示:
在这里插入图片描述

分别计算0-8cell内的灰度均值:
在这里插入图片描述
计算区域0 内的灰度最大值Ln,与其余区域的均值作除法,得到不同方向上的对比度,为了增强目标,定义局部对比度Cn如下:得到一张与原图大小一样的对比度图
在这里插入图片描述
在这里插入图片描述

2: 多尺度局部对比度:计算不同尺寸patch下的局部对比
### 关于弱小目标检测分割 #### 定义挑战 在计算机视觉领域,弱小目标检测一直是一个重要的研究方向。这类问题通常涉及识别图像中尺寸较小的目标物体,这些目标可能由于其微小的物理尺寸或距离较远而显得很小[^1]。 #### 方法概述 针对弱小目标检测的任务,存在多种不同的技术路径: - **基于检测的方法**:此类方法遵循常规目标检测流程,通过神经网络直接预测目标的位置边界框。这种方法适用于已知类别且具有足够训练样本的情况[^2]。 - **基于分割的方法**:此策略侧重于逐像素分类,即区分前景(目标)和背景区域,从而形成精确的目标轮廓描述。它特别适合处理形状不规则的小型对象,并能提供更细致的空间定位信息。 - **改进算法实例**:为了提高对复杂场景下弱小目标的有效捕捉能力,一些研究人员引入了新的机制来增强特征表达力。例如,MPCM算法利用多尺度局部对比度映射增强了目标相对于周围环境的独特性表示;DLCM则采用双层结构进一步提升了低对比度条件下的检测性能[^3][^4]。 #### 实现技巧 当涉及到具体实现时,可以考虑以下几个方面以优化弱小目标检测效果: - 数据预处理阶段增加数据扩增操作,如旋转、缩放和平移变换等,有助于提升模型泛化能力和鲁棒性; - 设计专门用于提取细粒度特征的地图金字塔或多分辨率融合模块,在不同层次上捕获更多细节信息; - 应用注意力机制引导网络关注潜在的关键部位,减少误报率并改善召回表现; - 调整损失函数权重分配给正负样本之间的平衡关系,防止因类不平衡造成偏差影响最终结果质量。 ```python import torch.nn as nn class WeakSmallObjectDetector(nn.Module): def __init__(self, backbone='resnet50', pretrained=True): super(WeakSmallObjectDetector, self).__init__() # Backbone network initialization with optional pretraining weights loading. if 'resnet' in backbone.lower(): from torchvision.models import resnet50 self.backbone = resnet50(pretrained=pretrained) # Additional layers designed specifically for weak small object detection task. self.feature_enhancer = FeatureEnhancementModule() self.attention_module = SpatialAttentionLayer() def forward(self, x): features = self.backbone(x) enhanced_features = self.feature_enhancer(features) attended_output = self.attention_module(enhanced_features) return attended_output ```
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值