GOT10K toolkit的使用以及使用python版本的OTB工具包对tracker对比

本文主要是记录一下是怎么使用GOT10K toolkit对跟踪器进行评估,以及使用python版本的OTB工具包画出最后的结果图。中间也是遇到很多地方不懂,记录下小白磕磕绊绊的过程。

GOT10K toolkit在不同数据集上对跟踪器进行评估

GOT-10k Python Toolkit是一个很强大的工具包,该工具包对目前主要用到的跟踪基准测试集均提供非官方的数据下载接口以及跟踪的实现:OTB (2013/2015), VOT (2013~2018), DTB70, TColor128, NfS (30/240 fps), UAV (123/20L), LaSOT and TrackingNet benchmarks。 (ILSVRC VID and YouTube-BoundingBox (comming soon!))

下面我们将介绍该如何使用:

1下载安装

推荐使用方法

pip install --upgrade got10k

2定义我们需要测试的跟踪器

from got10k.trackers import Tracker

class IdentityTracker(Tracker):
    def __init__(self):
        super(IdentityTracker, self).__init__(
            name='IdentityTracker',  # tracker name
            is_deterministic=True    # stochastic (False) or deterministic (True)
        )
    
    def init(self, image, box):
        self.box = box

    def update(self, image):
        return self.box

用该工具包定义自己需要测试的跟踪器时,只需要简单的定义IdentityTracker类里面的initupdate函数即可。

  • init函数:接收的是测试视频序列当中的初始帧以及初始帧的bbox。
  • update函数:接收的是后续帧,返回的是更新后的bbox。

3在GOT10K上运行对不同跟踪器的评估

from got10k.experiments import ExperimentGOT10k

# ... tracker definition ...

# instantiate a tracker
tracker = IdentityTracker()

# setup experiment (validation subset)
experiment = ExperimentGOT10k(
    root_dir='data/GOT-10k',    # GOT-10k's root directory
    subset='val',               # 'train' | 'val' | 'test'
    result_dir='results',       # where to store tracking results
    report_dir='reports'        # where to store evaluation reports
)
experiment.run(tracker, visualize=True)

# report tracking performance
experiment.report([tracker.name])

如果是其他的数据集,只需要稍微修改一下:

experiments = [
        # ExperimentVOT('data/VOT2019', version=2019)
        # ExperimentGOT10k('data/GOT-10k', subset='test'),
        ExperimentOTB('data/OTB', version=
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值