python自学路线——大数据方向

☞☞☞点击查看更多优秀Python博客☜☜☜

 Hello大家好,我是你们的朋友JamesBin上篇文章Python自学我们分析了自学python到底有没有用,那么下面这几篇文章我们就来看看自学python的路线应该如何规划
我们的学习路线呢?下面让我们首先看一下大数据方向的路线吧!

什么是大数据

  "大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。

在这里插入图片描述

大数据学习大纲

大数据学习大纲:(大纲来源:https://www.zhihu.com/people/RickyFine)

  • 数据分析的思维和方法
  • Excel进阶
  • 数据库和SQL入门
  • 数理统计学
  • 数据分析软件应用
  • 数据可视化
  • 常见的业务分析模型
  • Python/R语言掌握
  • 业务理解和指标设计
  • 增长黑客:数据驱动增长

在这里插入图片描述

获取大数据

获取大数据的方法主要有一下几种:

  1. 国家数据库:中国铁路交通数据、城市监控录像等;
  2. 企业数据:淘宝交易数据、淘宝购物车收藏数据、京东购物数据;
  3. 机器设备数据:GPS导航系统数据、车仪数据等;
  4. 个人数据:个人日常生活产生的数据。

  大数据的获取主要是从已有的资源中进行数据分析,从而得到自己想要的信息,再将信息进行分析利用。在获取到数据之后最重要的步骤还是看到数据具体张什么样子,有什么特点和规律。得到特点和规律之后根据我们的而具体需求进行贴标签分类处理。只有这样我们才能从复杂的数据中得到不易发现但是价值更大的信息。
  在获取数据的时候我们需要注意的是中国相关法律的规定,特别是爬虫爬取到的数据,我们应遵守相关法律。不得做违反法律的事情。

数据分析

学习路线

我将大数据的学习路线分为以下几步:
在这里插入图片描述

第一步:了解大数据的基本概念

  我们想要学习一个新知识,首先需要的就是知道他是什么?有什么作用?
  这个过程中我们应该能够懂得一些专业术语,能够使用基本的获取数据的方法,既然学习大数据我们级应该首先知道什么是大数据,大数据是用来干什么的,以免我们对大数据不了解就开始盲目的学习,从而得不到自己想要的收获。

第二步:学习获取大数据

  大数据的获取方法众多,我们应该能够从中总结出一种适合自己,适合实际情况的方法去得到我们想要的数据,其中最常用的就是爬虫,所以我们在学习大数据之前不仅要学习好python的基本功还要学会Python中的爬虫的相关知识。爬虫是一种容易入门的爬取数据的方法,但绝对不是唯一的一种方法,所以随着我们学习的不断深入,我们就会发现python爬虫已经不能满足我们了。
  我们只学习的时候一定要注意理论与实践相结合,不可只学不练,这是学习编程最大的忌讳,所以我们在学习的时候可以结所学内容进行一定的实践,做点小项目。

第三步:学习数据处理

  将我们的数据进行储存、可视化处理,这样茶能把我们得到的数据进行可视化输出。我们得到数据后需要对数据进行清洗、探索、提取、可视化处理,其中用到的主要的Python知识如何使用Python从CSV、Excel、XML、PDF 中获取数据,和各类的可视化处理的知识。
  数据清洗,首先最数据进行筛选,选合适的方式对数据进行筛选处理,保留有用数据,剔除无用数据,这个步骤非常的关键,只有数据清洗的干净,后期我们进行可视化处理时才能更加准确简单。

第四步:数据储存

  我们需要将得到的数据和处理后的数据进行储存,以便我们后期进行使用,要想进行数据储存,我们首先需要掌握文件操作,储存的方式和类型也是多种多样,其中主要包括:保存本地、保存到数据库中。前期我们只需要掌握如何将数据进行本地保存即可,当我们学习到一定程度后再考虑如何进行其他更加方便可靠的进行数据保存。

  介绍到这数据处理部分的大纲算是讲完了,本文仅代表本人观点,如有不同意见可在评论区留言,希望对你大数据方向有所帮助。在这里插入图片描述

Python数据挖掘简易入门

03-11
【为什么学习数据挖掘】       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。       从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。 【超实用的课程内容】      本课程为Python数据挖掘方向的入门课程,课程主要以真实数据为基础,详细介绍数据挖掘入门的流程和使用Python实现pandas与numpy在数据挖掘方向的运用,并深入学习如何运用scikit-learn调用常用的数据挖掘算法解决数据挖掘问题,为进一步深入学习数据挖掘打下扎实的基础。 本课程分为三大部分: 基础知识篇:主要讲解数据挖掘这项技能的基本工作流程和介绍和入门必须的基本技能Python语言的入门,带领大家了解数据挖掘的常见操作和基础知识。 数据采集篇:学习如何解决数据挖掘的数据来源问题,读取各类型不同的数据包括CSV,excel,MySQL进行数据采集的交互。 数据探索篇:本篇主要解决数据的预处理保证数据的质量并用常见数据挖掘算法进行特征提取,分析数据背后隐含的信息。 【报名须知】 课程采取录播模式,课程永久有效,可无限次观看 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化 【如何开始学习?】 PC端:报名成功后可以直接进入课程学习 移动端:下载CSDN学院或CSDN

150讲轻松搞定Python网络爬虫

05-16
【为什么学爬虫?】        1、爬虫入手容易,但是深入较难,如何写出高效率的爬虫,如何写出灵活性高可扩展的爬虫都是一项技术活。另外在爬虫过程中,经常容易遇到被反爬虫,比如字体反爬、IP识别、验证码等,如何层层攻克难点拿到想要的数据,这门课程,你都能学到!        2、如果是作为一个其他行业的开发者,比如app开发,web开发,学习爬虫能让你加强对技术的认知,能够开发出更加安全的软件和网站 【课程设计】 一个完整的爬虫程序,无论大小,总体来说可以分成三个步骤,分别是: 网络请求:模拟浏览器的行为从网上抓取数据数据解析:将请求下来的数据进行过滤,提取我们想要的数据数据存储:将提取到的数据存储到硬盘或者内存中。比如用mysql数据库或者redis等。 那么本课程也是按照这几个步骤循序渐进的进行讲解,带领学生完整的掌握每个步骤的技术。另外,因为爬虫的多样性,在爬取的过程中可能会发生被反爬、效率低下等。因此我们又增加了两个章节用来提高爬虫程序的灵活性,分别是: 爬虫进阶:包括IP代理,多线程爬虫,图形验证码识别、JS加密解密、动态网页爬虫、字体反爬识别等。 Scrapy和分布式爬虫:Scrapy框架、Scrapy-redis组件、分布式爬虫等。 通过爬虫进阶的知识点我们能应付大量的反爬网站,而Scrapy框架作为一个专业的爬虫框架,使用他可以快速提高我们编写爬虫程序的效率和速度。另外如果一台机器不能满足你的需求,我们可以用分布式爬虫让多台机器帮助你快速爬取数据。   从基础爬虫到商业化应用爬虫,本套课程满足您的所有需求! 【课程服务】 专属付费社群+每周三讨论会+1v1答疑
©️2020 CSDN 皮肤主题: 数字50 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值