规则: 今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下:
1、 这是一个二人游戏;
2、 一共有3堆石子,数量分别是m, n, p个;
3、 两人轮流走;
4、 每走一步可以选择任意一堆石子,然后取走f个;
5、 f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量);
6、 最先取光所有石子的人为胜者;假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。
数据:
Input
输入数据包含多个测试用例,每个测试用例占一行,包含3个整数m,n,p(1<=m,n,p<=1000)。
m=n=p=0则表示输入结束。Output
如果先手的人能赢,请输出“Fibo”,否则请输出“Nacci”,每个实例的输出占一行。
Sample Input
1 1 1 1 4 1 0 0 0Sample Output
Fibo Nacci
分析:像Nim博弈,又不像~...就是有约束条件,限制拿的个数是斐波那契数列的值~
SG(x)=mex(SG(所有通过x能达到的”局势“)),那么对于n堆石子的取石子游戏,
若SG(1)^SG(2)^……^SG(n)==0,则先手必败,否则先手必胜。
这一题的各个状态的SG值是:.....因为每次可以取走斐波那契数列里的数的石子数,那么对于任意状态i,i-Fibonacci[j]都是可以取到的,故我们需要预处理出Fibonacci数列,然后通过枚举的方法,把i-Fibonacci[j]的SG值全部标记,扫一遍,找到最小的非负整数即为i的SG值
详见CODE:
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
const int N=1e3+10;
int f[20];///斐波那契数列 到16就超过1000了~ m,n,p(1<=m,n,p<=1000)
int sg[N],vis[N];///vis数组记录所有出现过的非负整数
int m,n,p;
int getsg(int x)///求sg值
{
f[0]=1,f[1]=1;
for(int i=2; i<=20; i++)
f[i]=f[i-1]+f[i-2];
for(int i=1; i<=1000; i++)
{
mem(vis,0);
for(int j=0; f[j]<=i; j++)
vis[sg[i-f[j]]]=1;
for(int j=0; j<=1000; j++) ///求得最小非负整数
{
if(vis[j]==0)
{
sg[i]=j;
break;
}
}
}
}
int main()
{
getsg(N);
int n,m,p;
while(~scanf("%d%d%d",&n,&m,&p))
{
if(!n&&!m&&!p)break;
int ans=sg[n]^sg[m]^sg[p];
if(ans)printf("Fibo\n");
else printf("Nacci\n");
}
return 0;
}
积累ing...加油!