Fibonacci again and again(博弈系列)

传送门

规则: 今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下:
1、  这是一个二人游戏;
2、  一共有3堆石子,数量分别是m, n, p个;
3、  两人轮流走;
4、  每走一步可以选择任意一堆石子,然后取走f个;
5、  f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量);
6、  最先取光所有石子的人为胜者;

假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。

数据:  

Input

输入数据包含多个测试用例,每个测试用例占一行,包含3个整数m,n,p(1<=m,n,p<=1000)。
m=n=p=0则表示输入结束。

Output

如果先手的人能赢,请输出“Fibo”,否则请输出“Nacci”,每个实例的输出占一行。

Sample Input

1 1 1
1 4 1
0 0 0

Sample Output

Fibo
Nacci

 分析:像Nim博弈,又不像~...就是有约束条件,限制拿的个数是斐波那契数列的值~

SG(x)=mex(SG(所有通过x能达到的”局势“)),那么对于n堆石子的取石子游戏,

若SG(1)^SG(2)^……^SG(n)==0,则先手必败,否则先手必胜。

这一题的各个状态的SG值是:.....因为每次可以取走斐波那契数列里的数的石子数,那么对于任意状态i,i-Fibonacci[j]都是可以取到的,故我们需要预处理出Fibonacci数列,然后通过枚举的方法,把i-Fibonacci[j]的SG值全部标记,扫一遍,找到最小的非负整数即为i的SG值

详见CODE:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
const int N=1e3+10;
int f[20];///斐波那契数列 到16就超过1000了~ m,n,p(1<=m,n,p<=1000)
int sg[N],vis[N];///vis数组记录所有出现过的非负整数
int m,n,p;
int getsg(int x)///求sg值
{
    f[0]=1,f[1]=1;
    for(int i=2; i<=20; i++)
        f[i]=f[i-1]+f[i-2];
    for(int i=1; i<=1000; i++)
    {
        mem(vis,0);
        for(int j=0; f[j]<=i; j++)
            vis[sg[i-f[j]]]=1;
        for(int j=0; j<=1000; j++) ///求得最小非负整数
        {
            if(vis[j]==0)
            {
                sg[i]=j;
                break;
            }
        }
    }
}
int main()
{
    getsg(N);
    int n,m,p;
    while(~scanf("%d%d%d",&n,&m,&p))
    {
        if(!n&&!m&&!p)break;
        int ans=sg[n]^sg[m]^sg[p];
        if(ans)printf("Fibo\n");
        else printf("Nacci\n");
    }
    return 0;
}

积累ing...加油!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嵩韵儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值