学习神经网络笔记

1. 过程笔记:
  • 人工智能+金融:芝麻信用
  • 人工智能+内容创作:腾讯的DreamWriter和阿里的鲁班系统
  • 人工智能+机器人
  • 人工智能>机器学习>深度学习

逻辑演绎vs归纳总结

  • 调查问卷:每一个问题对应一个语义概念
  • 问题选项:同一概念的不同图像模式

知识工程vs机器学习

  • 知识工程:结果容易解释、依赖专家祝福按经验,难以保持一致性和准确性。好比与一个函数的构造过程,复杂度不固定
  • 机器学习:结果不易被解释、来源于真实数据,减少人工规则主观性,可信度高。好比一个神经网络,复杂度固定

机器学习的定义:

  1. 计算机系统能够利用经验提高自身性能
  2. 机器学习本质是给予经验数据和函数估计问题
  3. 提取重要模式、去式,并理解数据,即从数据中学习
    总的来说,是从数据中自动提取知识

什么时候用机器学习:规模大,有复杂的规则,是一个有意义的问题

机器学习怎么学:模型、策略、算法

模型分类的依据:数据标记、数据分布、建模对象

深度学习应用研究:视觉+语言

深度学习理论研究:从“能”到“不能”

深度学习的“不能”:算法输出不稳定,容易被攻击(对抗样本?、单像素攻击?)、模型复杂度高,难以纠错和调试(毛利语到英语的谷歌翻译)、模型的层级复合程度高,参数不透明、端到端训练方式对数据依赖性强,模型增量性差、专注直观感知类问题,对开放性推理问题无能为力(鹦鹉和乌鸦的例子,大象和民主党)、人类知识无法有效引入进行见度,机器偏见难以避免。稳定性低、可调试性差、参数不透明、机器偏见、增量性差、推理能力差。

未来的深度学习发展方向?基于人类学习知识的途径

神经网络基础

  • 浅层神经网络
  • 激活函数
  • 单层感知器:解决与非或
  • 多层感知器:解决异或
  • 万有逼近定理
  • 网络更深比更宽更加有效

神经网络如何学习:非线性函数的复合

梯度消失问题:产生原因:误差通过梯度进行反向传播,增加深度会造成梯度消失,误差无法传播,多层网络容易陷入局部极值,难以训练。

深层神经网络

  • 逐层预训练:找到局部较好或最好的初值。更快。
  • 自编码器:最小化重构错误,不需要保留中间输入。
  • 受限玻尔兹曼机(RBM):来回条件概率使得隐藏层得到的可见层与原来的可见层一致。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值