1. 过程笔记:
- 人工智能+金融:芝麻信用
- 人工智能+内容创作:腾讯的DreamWriter和阿里的鲁班系统
- 人工智能+机器人
- 人工智能>机器学习>深度学习
逻辑演绎vs归纳总结
- 调查问卷:每一个问题对应一个语义概念
- 问题选项:同一概念的不同图像模式
知识工程vs机器学习
- 知识工程:结果容易解释、依赖专家祝福按经验,难以保持一致性和准确性。好比与一个函数的构造过程,复杂度不固定
- 机器学习:结果不易被解释、来源于真实数据,减少人工规则主观性,可信度高。好比一个神经网络,复杂度固定
机器学习的定义:
- 计算机系统能够利用经验提高自身性能
- 机器学习本质是给予经验数据和函数估计问题
- 提取重要模式、去式,并理解数据,即从数据中学习
总的来说,是从数据中自动提取知识
什么时候用机器学习:规模大,有复杂的规则,是一个有意义的问题
机器学习怎么学:模型、策略、算法
模型分类的依据:数据标记、数据分布、建模对象
深度学习应用研究:视觉+语言
深度学习理论研究:从“能”到“不能”
深度学习的“不能”:算法输出不稳定,容易被攻击(对抗样本?、单像素攻击?)、模型复杂度高,难以纠错和调试(毛利语到英语的谷歌翻译)、模型的层级复合程度高,参数不透明、端到端训练方式对数据依赖性强,模型增量性差、专注直观感知类问题,对开放性推理问题无能为力(鹦鹉和乌鸦的例子,大象和民主党)、人类知识无法有效引入进行见度,机器偏见难以避免。稳定性低、可调试性差、参数不透明、机器偏见、增量性差、推理能力差。
未来的深度学习发展方向?基于人类学习知识的途径
神经网络基础
- 浅层神经网络
- 激活函数
- 单层感知器:解决与非或
- 多层感知器:解决异或
- 万有逼近定理
- 网络更深比更宽更加有效
神经网络如何学习:非线性函数的复合
梯度消失问题:产生原因:误差通过梯度进行反向传播,增加深度会造成梯度消失,误差无法传播,多层网络容易陷入局部极值,难以训练。
深层神经网络
- 逐层预训练:找到局部较好或最好的初值。更快。
- 自编码器:最小化重构错误,不需要保留中间输入。
- 受限玻尔兹曼机(RBM):来回条件概率使得隐藏层得到的可见层与原来的可见层一致。