本文仅用于个人学习记录,使用的教材为汤家凤老师的《高等数学辅导讲义》。本文无任何盈利或者赚取个人声望的目的,如有侵权,请联系删除!
一、入门练习
本题C选项凑出导数定义式之后,分母的Δx恒为正,根据定义式,只能知道f(x)的右导数存在。
二、基础练习
第十四题最开始使用了泰勒公式求解,但是结果错误,虽然不知道错误原因,但是其实本题可以直接求导,之后再代入。后续还是贯彻尽量不使用泰勒公式求解导数问题。
第十五题错误原因在于没有掌握如何拆分。这里补充一下拆分方法。
f(x) = 7 x − 2 2 x 2 + x − 1 \frac{7x - 2}{2x\ ^2 + x - 1} 2x 2+x−17x−2 = A 2 x − 1 \frac{A}{2x - 1} 2x−1A + B x + 1 \frac{B}{x + 1} x+1B,求解A和B的值即可。
本题题干中涉及到x和y与f(x)的关系,用导数的定义式,f’(x) = lim h → 0 f ( x + h ) − f ( x ) h \lim_{h\rightarrow\ 0}\frac{f(x + h) - f(x)}{h} limh→ 0hf(x+h)−f(x)可以引入x和h与f(x)的关系式,再利用题干给出的式子,可以求解f(x)。
本题还需要明确一阶齐次线性微分方程求解的方法。
形如 d y d x \frac{d_y}{d_x} dxdy + P(x) = 0的方程称为一阶齐次线性微分方程。它的通解为y = Ce∫P(x)dx
本题证明连续的方法是,证明极限值等于函数值。两问的证明中都使用了夹逼定理。