利用matlab编程实现的声波的时域差分方程

一、 声波方程的数值计算

网格离散

声波基本方程如下
∂ p ∂ t = − ρ c 2 ( ∂ v x ∂ x + ∂ v y ∂ y + ∂ v z ∂ z ) ∂ v z ∂ t = − 1 ρ ∂ p ∂ z \frac{\partial p}{\partial t}=-\rho c^{2}\left(\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}\right)\\ \\ \\ \frac{\partial v_{z}}{\partial t}=-\frac{1}{\rho} \frac{\partial p}{\partial z} tp=ρc2(xvx+yvy+zvz)tvz=ρ1zp
离散网格采用cartesian网格划分法,对于声压P、质点振速v,进行离散化得到:
  p n ( i , j , k ) = p [ i Δ x , j Δ y , k Δ z , n Δ t ]   \ {p^n}(i,j,k) = p[i\Delta x,j\Delta y,k\Delta z,n\Delta t] \,  pn(i,j,k)=p[iΔx,jΔy,kΔz,nΔt]
速度离散
  v x n + 1 / 2 ( i − 1 / 2 , j , k ) = v x [ ( i − 1 / 2 ) Δ x , j Δ y , k Δ z , ( n + 1 / 2 ) Δ t ] v y n + 1 / 2 ( i , j − 1 / 2 , k ) = v x [ i Δ x , ( j − 1 / 2 ) Δ y , k Δ z , ( n + 1 / 2 ) Δ t ] v z n + 1 / 2 ( i , j , k − 1 / 2 ) = v x [ i Δ x , j Δ y , ( k − 1 / 2 ) Δ z , ( n + 1 / 2 ) Δ t ] \ v_x^{n + 1/2}(i - 1/2,j,k) = {v_x}[(i - 1/2)\Delta x,j\Delta y,k\Delta z,(n + 1/2)\Delta t]\\ v_y^{n + 1/2}(i,j - 1/2,k) = {v_x}[i\Delta x,(j - 1/2)\Delta y,k\Delta z,(n + 1/2)\Delta t]\\ v_z^{n + 1/2}(i,j,k - 1/2) = {v_x}[i\Delta x,j\Delta y,(k - 1/2)\Delta z,(n + 1/2)\Delta t]  vxn+1/2(i1/2,j,k)=vx[(i1/2)Δx,jΔy,kΔz,(n+1/2)Δt]vyn+1/2(i,j1/2,k)=vx[iΔx,(j1/2)Δy,kΔz,(n+1/2)Δt]vzn+1/2(i,j,k1/2)=vx[iΔx,jΔy,(k1/2)Δz,(n+1/2)Δt]
将振动速度和声压进行离散,然后把质点振动速度和声压进行在时间上相差半步进行抽样,进而实现空间,时间的四维模型中实现交替抽样。
将离散后的方程带入声波方程如下:
p n + 1 ( i , j , k ) = p n ( i , j , k ) − ρ c 2 ( i , j , k ) ⋅ Δ t ⋅ { 1 Δ x [ v x n + 1 / 2 ( i + 1 2 , j , k ) − v x n + 1 / 2 ( i − 1 2 , j , k ) ] + 1 Δ y [ v y n + 1 / 2 ( i , j + 1 2 , k ) − v y n + 1 / 2 ( i , j − 1 2 , k ) ] + 1 Δ z [ v z n + 1 / 2 ( i , j + 1 2 , k ) − v z n + 1 / 2 ( i , j − 1 2 , k ) ] } } v x n + 1 / 2 ( i − 1 2 , j , k ) = v x n − 1 / 2 ( i − 1 2 , j , k ) − Δ t ρ ⋅ Δ x [ p n ( i , j , k ) − p n ( i − 1 , j , k ) ] v y n + 1 / 2 ( i , j − 1 2 , k ) = v y n − 1 / 2 ( i , j − 1 2 , k ) − Δ t ρ ⋅ Δ y [ p n ( i , j , k ) − p n ( i , j − 1 , k ) ] v z n + 1 / 2 ( i , j , k − 1 2 ) = v z n − 1 / 2 ( i , j , k − 1 2 ) − Δ t ρ ⋅ Δ z [ p n ( i , j , k ) − p n ( i , j , k − 1 ) ] {{p^{n + 1}}(i,j,k) = {p^n}(i,j,k) - \rho {c^2}(i,j,k) \cdot \Delta t \cdot \left\{ {\frac{1}{{\Delta x}}\left[ {v_x^{n + 1/2}\left( {i + \frac{1}{2},j,k} \right) - v_x^{n + 1/2}\left( {i - \frac{1}{2},j,k} \right)} \right]} \right.} \\ {\left. {\left. { + \frac{1}{{\Delta y}}\left[ {v_y^{n + 1/2}\left( {i,j + \frac{1}{2},k} \right) - v_y^{n + 1/2}\left( {i,j - \frac{1}{2},k} \right)} \right] + \frac{1}{{\Delta z}}\left[ {v_z^{n + 1/2}\left( {i,j + \frac{1}{2},k} \right) - v_z^{n + 1/2}\left( {i,j - \frac{1}{2},k} \right)} \right]} \right\}} \right\}} \\ {} \\ {v_x^{n + 1/2}\left( {i - \frac{1}{2},j,k} \right) = v_x^{n - 1/2}\left( {i - \frac{1}{2},j,k} \right) - \frac{{\Delta t}}{{\rho \cdot \Delta x}}\left[ {{p^n}(i,j,k) - {p^n}(i - 1,j,k)} \right]} \\ {v_y^{n + 1/2}\left( {i,j - \frac{1}{2},k} \right) = v_y^{n - 1/2}\left( {i,j - \frac{1}{2},k} \right) - \frac{{\Delta t}}{{\rho \cdot \Delta y}}\left[ {{p^n}(i,j,k) - {p^n}(i,j - 1,k)} \right]} \\ {v_z^{n + 1/2}\left( {i,j,k - \frac{1}{2}} \right) = v_z^{n - 1/2}\left( {i,j,k - \frac{1}{2}} \right) - \frac{{\Delta t}}{{\rho \cdot \Delta z}}\left[ {{p^n}(i,j,k) - {p^n}(i,j,k - 1)} \right]} pn+1(i,j,k)=pn(i,j,k)ρc2(i,j,k)Δt{Δx1[vxn+1/2(i+21,j,k)vxn+1/2(i21,j,k)]+Δy1[vyn+1/2(i,j+21,k)vyn+1/2(i,j21,k)]+Δz1[vzn+1/2(i,j+21,k)vzn+1/2(i,j21,k)]}}vxn+1/2(i21,j,k)=vxn1/2(i21,j,k)ρΔxΔt[pn(i,j,k)pn(i1,j,k)]vyn+1/2(i,j21,k)=vyn1/2(i,j21,k)ρΔyΔt[pn(i,j,k)pn(i,j1,k)]vzn+1/2(i,j,k21)=vzn1/2(i,j,k21)ρΔzΔt[pn(i,j,k)pn(i,j,k1)]

时域差分方程是一种显式差分方程,在求解过程中,需要考虑算法的稳定性问题。在求解过程中的不稳定性表现为,随着时间步数的增加,计算结果也会无限制的增加。之前研究者们,对时间步长的限制条件进行了讨论,得出数值解是否稳定取决于时间步长和空间步长的关系。在非均匀媒介构成的空间中,需要进行合理的选择,得到时域有限差分的时间空间关系如下:
  Δ t ⩽ 1 c max ⁡ ( 1 Δ x ) 2 + ( 1 Δ y ) 2 + ( 1 Δ z ) 2 \ \Delta t \leqslant \frac{1}{{{c_{\max }}\sqrt {{{\left( {\frac{1}{{\Delta x}}} \right)}^2} + {{\left( {\frac{1}{{\Delta y}}} \right)}^2} + {{\left( {\frac{1}{{\Delta z}}} \right)}^2}} }}\\  Δtcmax(Δx1)2+(Δy1)2+(Δz1)2 1
其中必须确定频率和步长的关系如下:
  Δ s < = λ min ⁡ N \ \Delta s < = \frac{{{\lambda _{\min }}}}{N}\\  Δs<=Nλmin

设定非均匀区域为中间十字形状(简单设置非均匀区域),如果需要可以更加复杂非均匀区域的可以再设定一个密度或者振速矩阵,或者改成for循环,利用条件语句设定,如果需要联系我
代码如下:

clc;
clear;
global Nx Ny Nt dx dy dt
Nx=300; Ny=300; Nt=900;%设置采样点数,采样时间点数
dx=1e-4;    %x方向和Y方向的步长
dy=1e-4;     %空间步长
dt=1e-8;   %时间步长
f=1e6;      %激励频率
p=p_(1000,1000,1000,1000);   %均匀 pl(声速1,声速2,密度1,密度2)
p1=p_(1000,1000,1000,1500);  %非均匀
dp=p-p1;                     %二者差值 
for k=1:4:Nt
figure (1);
subplot(1,3,2);   
pcolor(p(:,:,k));
shading interp;
colormap('bone');
axis equal;axis([0,200,0,200]);title('圆形密度均匀30*30')

subplot(1,3,1);
pcolor(p1(:,:,k));
shading interp;
colormap('bone');
axis equal;axis([0,200,0,200]);title('非均匀')

subplot(1,3,3);
pcolor(dp(:,:,k));
shading interp;
colormap('bone');
axis equal;axis([0,200,0,200]);title('均匀')
end
function p=p_(c1,c2,q1,q2)
global Nx Ny Nt dx dy dt
Nx=300; Ny=300; Nt=900;%设置采样点数,采样时间点数
dx=1e-4;    %x方向和Y方向的步长
dy=1e-4;     %空间步长
dt=1e-8;   %时间步长
f=1e6;      %激励频率
%基础条件设定完成
ux=zeros(Nx,Ny,Nt);
uy=zeros(Nx,Ny,Nt);
p=zeros(Nx,Ny,Nt);
cx=zeros(Nx,Ny,Nt);
cy=zeros(Nx,Ny,Nt);
D=@(v)[0;(v(2:end-1)-v(1:end-2));0];
D1=@(v)[0,(v(2:end-1)-v(1:end-2)),0];
D2=@(v)[(v(2:end)-v(1:end-1)); 0];
D3=@(v)[(v(2:end)-v(1:end-1)),0];
for k=1:Nt-1
    p(100,100,k)=sin(2*pi*f*k*dt);  %中心声源点
    for j=1:Nx
        if (j-100)^2<=900
                    c=c1;   q=q1;              
          
            else 
                    c=c2; q=q2;                %介质
        end      
      ux(:,j,k+1)=ux(:,j,k)-dt/(dx*q)*D(p(:,j,k));
      uy(j,:,k+1)=uy(j,:,k)-dt/(dy*q)*D1(p(j,:,k));
      cx(:,j,k+1)= D2(ux(:,j,k+1));
      cy(j,:,k+1)= D3(uy(j,:,k+1));
    end
     for i=1:Nx
        for j=1:Nx
            
    p(i,j,k+1)=p(i,j,k)-(q*c^2*dt*(cx(i,j,k+1)/dx+cy(i,j,k+1)/dy));
        end
     end
end                  
end

图像如下:
在这里插入图片描述
当然为了直观也可以画二维数值图像
代码如下:

figure (2)
for k=1:4:Nt
plot((p(100,:,k)));axis([0,200,-1,1]);
drawnow;
end

在这里插入图片描述
这是声波方程的时域差分的数值计算,通过在循环中改变密度速度来改变传播介质。此代码没有施加吸收边界,因此瞬态声波传导到边界后会发生反射。邮箱dynyanhao@163.com

有限差分法是一种数值计算方法,用于近似连续函数的导数,常用于解决偏微分方程,如波动方程。在二维波动方程中,通常描述的是在二维空间中的波动现象,例如声波、电磁波或水波的传播。 二维波动方程的标准形式是: \[ \frac{\partial^2 u}{\partial t^2} = c^2(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}) \] 其中,\(u(x, y, t)\) 是位移或扰动,\(c\) 是波速,\(t\) 是时间。 有限差分方法是通过将时间和空间上的偏导数替换为它们在网格点处的离散近似来求解这个方程。常用的方法有向前差分(用当前值估计未来的值)、向后差分(用过去的值估计未来的值)以及中心差分(使用前后两点的值进行平均),这取决于阶数的选择。 以下是一个简单的二维有限差分示例,用四阶中心差分方法(即二阶对时间,二阶对空间)来逼近方程: ```matlab % 定义网格参数 dx = 0.1; % 空间步长 dt = 0.01; % 时间步长 Lx = 10; % 横向长度 Ly = 10; % 纵向长度 N = Lx/dx; % 空间网格点数 T = 5; % 总时间 % 初始化二维数组存储波场 u = zeros(N, N, T+1); % 边界条件(例如固定边界或零初始条件) u(:, 1, :) = 0; u(:, N, :) = 0; u(1, :, :) = 0; u(N, :, :) = 0; % 波速 c = 1; % 二维中心差分 for t = 1:T u(:,:,t+1) = u(:,:,t) + dt/c^2 * (4*u(:,:,t) - u(:,:,t-1) + ... central_diff2(u, 2, dx, 'y') + central_diff2(u, 2, dx, 'x')); end % 二维中心差分函数(对于x和y方向) central_diff2(u, k, dx, direction) = if strcmp(direction, 'x') (u(2:end-1, :, t) - 2*u(1:end-2, :, t))/dx^2 else (u(:, 2:end-1, t) - 2*u(:, 1:end-2, t))/dx^2 end; ``` 在这个例子中,`central_diff2`函数用于计算空间偏导数,`direction`参数决定了是沿x轴还是y轴。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值