Codeforces1260A Heating

思路:

1.因为需要cost最小,所以所有的暖气需要是sum/c(设为a)个部分或者sum/c+1(设为b)个部分;
2.我们设前者x个,后者y个,可以得到
{ a x + b y = s u m x + y = c \begin{cases} ax+by=sum\\ x+y=c \end{cases} {ax+by=sumx+y=c
解出x、y然后算总开销即可;

代码:

#define IOS ios::sync_with_stdio(false);cin.tie(0)
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int main(){
	IOS;
	int n;
	cin>>n;
	while(n--){
		LL c,sum;
		cin>>c>>sum;
		LL a=sum/c,b=a+1;
		LL x=b*c-sum;
		LL y=c-x;
		cout<<x*a*a+y*b*b<<'\n';	
	}
	return 0;
}
内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
### 关于 Codeforces Problem 1804A 的解决方案 Codeforces 是一个广受欢迎的在线编程竞赛平台,其中问题 1804A 可能涉及特定算法或数据结构的应用。尽管未提供具体题目描述,但通常可以通过分析输入输出样例以及常见解法来推导其核心逻辑。 #### 题目概述 假设该问题是关于字符串处理、数组操作或其他基础算法领域的内容,则可以采用以下方法解决[^2]: 对于某些初学者来说,遇到不熟悉的语言(如 Fortran),可能会感到困惑。然而,在现代竞赛环境中,大多数情况下会使用更常见的语言(C++、Python 或 Java)。因此,如果题目提及某种神秘的语言,可能只是为了增加趣味性而非实际需求。 #### 解决方案思路 以下是基于一般情况下的潜在解答方式之一: ```cpp #include <bits/stdc++.h> using namespace std; int main(){ int t; cin >> t; // 输入测试用例数量 while(t--){ string s; cin >> s; // 获取每组测试数据 // 假设这里需要执行一些简单的变换或者判断条件... bool flag = true; // 初始化标志位为真 for(char c : s){ if(c != 'a' && c != 'b'){ flag = false; break; } } cout << (flag ? "YES" : "NO") << "\n"; // 输出结果 } return 0; } ``` 上述代码片段展示了一个基本框架,适用于许多入门级字符串验证类问题。当然,这仅作为示范用途;真实场景下需依据具体要求调整实现细节。 #### 进一步探讨方向 除了官方题解外,社区论坛也是获取灵感的好地方。通过阅读他人分享的经验教训,能够加深对该类型习题的理解程度。同时注意积累常用技巧并灵活运用到不同场合之中[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值