Codeforces 1265E Beautiful Mirrors(概率DP,逆元)

本文深入解析了使用动态规划(DP)算法解决概率问题的思路,特别是如何利用逆元处理取模运算,确保计算精度。通过具体案例,详细介绍了DP状态转移方程的构建过程,并提供了C++代码实现,展示了如何高效地求解通过一系列镜子的期望天数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

思路:

1.记dp[i]为通过第i面镜子的期望天数,pi为通过第i面镜子的概率,则我们可以得到dp[i]=dp[i-1]+pi*1+(1-pi)*(dp[i]+1),其中的dp[i-1]为走到第i-1的期望天数,此时我们有pi概率只需要再走一天,有1-pi概率需要再走1+dp[i]天(往前走一天,失败,然后再走通过i的期望天数);
2.除法取模需要用到逆元;

代码:

#include<bits/stdc++.h>
using namespace std;
#define pt(a) cerr<<a<<"---\n"
typedef long long LL;
void extgcd(LL a,LL b,LL& x,LL& y){
    if(b==0){x=1,y=0;return;}
    extgcd(b,a%b,x,y);
    LL t=x;x=y;y=t-(a/b)*y;
}
LL mod_inv(LL a,LL m){LL x,y;extgcd(a,m,x,y);return (m+x%m)%m;}
const int maxn=2e5+99;
const LL M=998244353;
int n,p[maxn];
LL dp[maxn],inv[105];
void solve(){
    for(int i=1;i<=n;i++){
        if(inv[p[i]]==0)inv[p[i]]=mod_inv(p[i],M);
        dp[i]=(dp[i-1]+1)*100ll%M*inv[p[i]]%M;
    }
    cout<<dp[n];
}
int main(){
	ios::sync_with_stdio(false);
	cin.tie(NULL);
	cin>>n;
	for(int i=1;i<=n;i++)cin>>p[i];
	solve();
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值