思路:
1.记dp[i]
为通过第i
面镜子的期望天数,pi
为通过第i
面镜子的概率,则我们可以得到dp[i]=dp[i-1]+pi*1+(1-pi)*(dp[i]+1)
,其中的dp[i-1]
为走到第i-1
的期望天数,此时我们有pi
概率只需要再走一天,有1-pi
概率需要再走1+dp[i]
天(往前走一天,失败,然后再走通过i
的期望天数);
2.除法取模需要用到逆元;
代码:
#include<bits/stdc++.h>
using namespace std;
#define pt(a) cerr<<a<<"---\n"
typedef long long LL;
void extgcd(LL a,LL b,LL& x,LL& y){
if(b==0){x=1,y=0;return;}
extgcd(b,a%b,x,y);
LL t=x;x=y;y=t-(a/b)*y;
}
LL mod_inv(LL a,LL m){LL x,y;extgcd(a,m,x,y);return (m+x%m)%m;}
const int maxn=2e5+99;
const LL M=998244353;
int n,p[maxn];
LL dp[maxn],inv[105];
void solve(){
for(int i=1;i<=n;i++){
if(inv[p[i]]==0)inv[p[i]]=mod_inv(p[i],M);
dp[i]=(dp[i-1]+1)*100ll%M*inv[p[i]]%M;
}
cout<<dp[n];
}
int main(){
ios::sync_with_stdio(false);
cin.tie(NULL);
cin>>n;
for(int i=1;i<=n;i++)cin>>p[i];
solve();
return 0;
}