题目链接:
1018 Subnumbers (35分)
思路:
1.设前缀和数组sum[i]
表示位置
[
0
,
i
]
[0,i]
[0,i]非零数的个数;
2.设数组ans[i][j]
是数字
(
i
.
.
.
.
i
)
%
m
o
d
(i....i)\%mod
(i....i)%mod,其中一共
j
j
j个
i
i
i,例如ans[2][5]
为数字
22222
22222
22222;
3.设题目所给数字长度为
l
e
n
len
len,用字符串s
存储这个数字,则答案为
∑
a
n
s
[
s
[
i
]
−
′
0
′
]
[
l
e
n
−
i
]
∗
s
u
m
[
i
]
%
m
o
d
\sum ans[s[i]-'0'][len-i]*sum[i]\%mod
∑ans[s[i]−′0′][len−i]∗sum[i]%mod;(原因自己举两个例子手推一下就知道了)
代码:
#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod=1e9+7;
const int maxn=1e5+5;
string s;
LL sum[maxn],ans[10][maxn];
void solve(){
int len=s.length();
for(LL i=1;i<=9;++i){
ans[i][1]=i;
for(int j=2;j<=len;++j) ans[i][j]=10ll*ans[i][j-1]%mod+i;
}
for(int i=0;i<len;++i){
if(s[i]!='0') ++sum[i];
if(i) sum[i]+=sum[i-1];
}
LL res=0;
for(int i=0;i<len;++i){
res+=ans[s[i]-'0'][len-i]*sum[i]%mod;
res%=mod;
}
cout<<res;
}
int main(){
// freopen("Sakura.txt","r",stdin);
cin>>s;
solve();
return 0;
}