题目:
给定一个范围在 1 ≤ a[i] ≤ n ( n = 数组大小 ) 的 整型数组,数组中的元素一些出现了两次,另一些只出现一次。
找到所有在 [1, n] 范围之间没有出现在数组中的数字。
您能在不使用额外空间且时间复杂度为O(n)的情况下完成这个任务吗? 你可以假定返回的数组不算在额外空间内。
示例:
输入:
[4,3,2,7,8,2,3,1]
输出:
[5,6]
源码:
class Solution {
public List<Integer> findDisappearedNumbers(int[] nums) {
// 先把每个数放在它该出现的位置
// 例如 1 应该被放在下标为 0 的位置,如果下标为 0 的位置已经是 1 了
// 那么说明 1 重复出现了,此时将这个数设置为 -1
// 最后再次遍历数组,将数字为 -1 的元素设置为 该下标 + 1 就是原本正确的数字
for (int i = 0; i < nums.length;) {
int pos = nums[i];
// pos 等于 i + 1 说明该位置的正确数字就是 pos
// pos 等于 -1 说明之前已经将某个数设置为了 -1
// 继续遍历下一个数字
if (pos == -1 || i == pos - 1) {
i++;
continue;
}
// pos - 1 就是 pos 这个数正确的位置所在
// 如果该位置已经有了 pos,那么说明该数字重复了
if (nums[pos - 1] == pos) {
nums[i] = -1;
i++;
continue;
}
// 如果以上两种情况都不符合
// 那么就需要交换数字,把这个数字换到正确的位置
int tmp = nums[pos - 1];
nums[pos - 1] = nums[i];
nums[i] = tmp;
}
// 开始重新遍历数组,将 -1 设置为正确的数字
List<Integer> list = new ArrayList<>();
for (int j = 0; j < nums.length; j++) {
if (nums[j] == -1) {
list.add(j + 1);
}
}
return list;
}
}