Sentinel 2(哨兵2)卫星遥感数据的波段和组合介绍

Sentinel 2(哨兵2) 的波段共有 13 个,每个波段的像素大小为 10、20 或 60 米不等。Sentinel 2 由 2 颗卫星组成: 第一个是 2015 年发行的 Sentinel 2A 卫星,另一个是 2017 年发行的 Sentinel 2B 卫星。另外两颗卫星(Sentinel 2C 和 2D)计划于 2024 年发射,总计共四颗 Sentinel-2 卫星。总体而言,这 2 颗额外的卫星将会把重访时间缩短一半。

Sentinel 2 波段

Sentinel-2 携带多光谱成像仪(MSI),该传感器提供13个光谱波段,像素大小范围从 10 到 60 米。

  • 蓝色 (B2)、绿色 (B3)、红色 (B4) 和近红外 (B8) 波段具有 10 米的分辨率;
  • 红端(B5)、近红外 NIR(B6、B7 和 B8A)以及短波红外 SWIR(B11和B12)的地面采样距离为20米;
  • 沿海大气气溶胶 (B1) 和卷云波段 (B10) 的像素大小为 60 米;

Sentinel 波段组合

我们通过使用波段组合来更好地解释图像中的要素特征,其目的是以创造性的方式重新安排可用的波段。

通过使用波段组合,我们可以从图像中提取特定的信息。例如,某些波段组合可以突出图像中的地质、农业或植被特征。如果您想亲自查看 Sentinel 波段组合,那么可以查看 Sentinel Playground,它能够显示更多的波段组合情况。

自然色 (B4, B3, B2)

自然色波段组合以红色 (B4)、绿色 (B3) 和蓝色 (B2) 三种方式来呈现,其目的是以我们眼睛看待世界的方式来显示图像,正如我们所看到的,健康的植被是绿色的,城市通常以白色和灰色来表示,而水是深蓝色的,不过这取决于它的清洁程度。

自然色带组合使用红色(B4)、绿色(B3)和蓝色(B2)波段。其目的是以我们的眼睛看世界的方式显示图像。正如我们所看到的,健康的植被是绿色的,城市通常以白色和灰色来表示。水是深蓝色的,不过这取决于它的清洁程度。

彩色红外线 (B8, B4, B3)

彩色红外波段组合旨在强调健康和不健康的植被情况。通常使用近红外 (B8) 波段,尤其是它特别擅长反射叶绿素的特点。这就是为什么在彩色红外图像中,较密集的植被是红色的,而城市地区是白色的。

短波红外线 (B12, B8A, B4)

短波红外波段组合使用 SWIR (B12)、NIR (B8A) 和红色 (B4)三种波段。该合成图显示了各种绿色深浅的植被情况。一般来说,较深的绿色表示植被较密集,棕色表示的是裸露的土壤和建筑区域。

农业 (B11, B8, B2)

农业波段组合使用 SWIR-1 (B11)、近红外 (B8) 和蓝色 (B2)三种波段。它主要用于监测作物的健康状况,它使用短波和近红外线,这两个波段都特别擅长突出显示深绿色的茂密植被区域。

地质波段 (B12, B11, B2)

地质波段组合是寻找地质特征的巧妙应用,包括断层、岩性和地质构造。地质学家往往会通过 SWIR-2 (B12)、SWIR-1 (B11) 和蓝色 (B2) 波段的特征来处理,不过他们往往更倾向于使用 Sentinel 波段组合进行分析。

水深测量 (B4, B3, B1)

顾名思义,水深测量波段组合有利于海岸的研究。水深测量波段组合使用的是红色 (B4)、绿色 (B3) 和海岸带 (B1),同样,沿海大气气溶胶波段的使用有利于估算水中的悬浮沉积物状况。

植被指数 (B8-B4)/(B8+B4)

近红外表示植被强烈反射,红光表示植被吸收情况。植被指数有利于量化植被的数量。归一化植被指数的公式为(B8-B4)/(B8+B4)。高值表示茂密的树冠,低值或负值表示城市和水景。

由于近红外(植被强烈反射)和红光(植被吸收)的特点,植被指数有利于量化植被数量。归一化差值植被指数的公式为 (B8-B4)/(B8+B4),其中高值表示树冠致密的情况,低值或负值表示城市和水景区域。

水分指数 (B8A-B11)/(B8A+B11)

水分指数是寻找植物水分压力的理想选择方式。它使用短波和近红外来生成水分含量指数,一般来说,较潮湿的植被具有较高的值,而较低的水分指数值表明植物因水分不足而受到的压力值。

Sentinel 2 数据访问和软件

如果您想下载 Sentinel 2 数据,那么 Sentinel Open Access Hub 无疑是您最佳的选择。该数据门户由 欧洲航天局 (ESA) 管理,包含来自所有 Sentinel 卫星的所有最新数据。如果您需要分步指南,请查阅 如何下载 Sentinel 2 图像 的教程;如果想分析、操作或只是可视化图像,SNAP Toolbox 完全免费并供所有人使用。

<think>好的,我现在需要解决用户的问题:为什么Google Earth Engine (GEE)2018年4月缺失哨兵2影像,而欧空局官网上存在该影像。首先,我要了解用户的具体需求背景。用户可能在对比GEE欧空局官网的数据时发现了这一差异,并希望了解原因。 根据用户提供的引用资料,我需要先回顾相关的信息。引用[1]提到,以前欧空局的哨兵影像可能需要申请才能下载,但现在新版已经可以直接下载包括2016年的数据。引用[2][3]提到GEE使用哨兵2数据进行土地利用变化检测分析,而引用[4]涉及数据处理流程,特别是Level 2到Level 3的转换。这些信息可能帮助分析GEE的数据处理机制。 首先,可能的几个原因包括数据收录策略不同、数据处理延迟、数据过滤规则或技术问题。我需要逐一分析这些可能性。 1. **数据收录策略差异**:GEE可能没有收录所有欧空局提供的历史数据。虽然引用[1]指出现在新版欧空局可以下载旧数据,但GEE可能出于存储或更新策略,仅保留特定时间段的数据。例如,GEE可能优先收录经过处理或符合特定质量标准的数据,而2018年4月的数据可能未满足这些条件。 2. **数据处理延迟**:GEE在将原始数据转换为可用产品时可能需要时间。哨兵2的原始数据(Level-1C)需要经过大气校正等处理生成Level-2A产品,这个过程可能需要时间。如果用户在2018年4月查询时,GEE尚未完成该月份的数据处理,就会显示缺失,而欧空局官网可能提供的是未经处理或不同级别的数据。 3. **数据过滤规则**:GEE可能应用了自动过滤规则,如云量覆盖、区域覆盖完整性等。例如,如果2018年4月的数据在GEE中被标记为云量过高或质量不佳,系统可能自动排除这些影像,而欧空局官网提供的是原始数据,未经过滤。 4. **数据更新与同步问题**:可能存在数据同步延迟。欧空局更新数据后,GEE需要时间同步到自己的存储系统中。如果用户查询时GEE尚未同步该月份的数据,就会出现缺失。 5. **权限或授权问题**:虽然引用[1]提到现在欧空局的数据更容易获取,但可能存在特定时间段的授权限制,导致GEE无法收录某些时期的数据。 接下来,我需要验证这些可能性是否合理。例如,GEE的文档是否有说明其数据收录策略?是否有用户报告过类似的问题?另外,引用[4]提到AI Earth平台处理哨兵5P数据时需要进行数据转换,这可能暗示数据处理流程中的复杂性,类似的情况可能适用于哨兵2数据。 此外,GEE的数据目录可能只包含经过预处理的可用数据,而欧空局官网提供更原始的数据。例如,GEE可能要求数据必须通过某些质量检查或覆盖特定区域,才会被收录。如果2018年4月的数据在这些检查中未通过,就会被排除。 另一个可能性是数据存档策略。GEE可能定期清理旧数据或仅保留一定时间范围内的数据,而欧空局官网则保留更完整的历史记录。但根据引用[1],欧空局之前也有离线数据需要申请,但现在可以直接下载,可能GEE的数据策略不同步。 此外,用户可能需要确认具体的产品名称数据集版本是否正确。例如,哨兵2有不同的处理级别(如Level-1CLevel-2A),GEE可能只收录其中一个级别,而用户可能在欧空局官网上查看的是另一个级别的数据。 最后,建议用户检查GEE的数据集文档,或直接对比同一影像的元数据(如影像ID、日期、处理级别等),确认是否确实存在差异,或者联系GEE支持团队获取详细信息。</think>根据对Google Earth Engine(GEE)欧空局哨兵数据工作机制的分析,2018年4月哨兵2影像在GEE中缺失的可能原因如下: ### 一、数据收录策略差异 GEE可能未完全收录哨兵2所有历史数据。虽然欧空局官网目前已开放2016年以来的直接下载权限[^1],但GEE出于**存储成本**或**数据处理优先级**考虑,可能仅选择性地收录符合特定质量标准或时间范围的数据。例如: - GEE可能优先收录经过云掩膜、大气校正(如Level-2A)的影像,而欧空局官网提供更原始的Level-1C数据[^4]; - 部分区域因覆盖不完整或质量问题被GEE过滤,而欧空局保留原始存档。 ### 二、数据处理延迟 哨兵2数据从获取到可用需经历多个步骤: 1. 欧空局发布原始数据(Level-1C); 2. GEE进行大气校正生成Level-2A产品; 3. 数据同步至GEE存储系统。 若2018年4月数据在GEE中尚未完成处理或同步,则会出现缺失[^4]。 ### 三、数据过滤规则 GEE可能应用了**自动过滤规则**,例如: - **云量阈值**:若该月影像云覆盖率普遍高于设定值,系统自动排除; - **元数据完整性**:如轨道信息缺失或时间戳错误; - **区域覆盖限制**:部分区域因卫星轨道调整未完全覆盖。 ### 四、解决方案与验证建议 1. **检查GEE数据集版本** 确认使用的是`COPERNICUS/S2_SR_HARMONIZED`(地表反射率产品)还是其他版本,部分数据集可能未收录早期数据2. **直接查询原始数据ID** 通过欧空局官网获取2018年4月影像的**Product ID**,在GEE中尝试调用: ```javascript var image = ee.Image('COPERNICUS/S2/20180407T101020_20180407T101020_T32TQM'); print(image); ``` 3. **联系GEE支持团队** 提交具体日期区域,请求技术团队核查数据收录日志。 ### 五、典型案例参考 类似问题曾出现在哨兵5P大气数据中。由于Level-2数据需转换为Level-3级格式,AI Earth平台会出现特定时间段的数据延迟[^4],这表明数据处理流程差异可能导致可见性不同。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值