摘要:
一种对于大型多模波导滤波器的设计方法,其能衰减掉(deteriorate)不想要的模式而不影响所需要的工作模式,被提出来抑制用于圆TE01模式高功率传输线的受限模式谐振。为了从TE10模式中分离出不期望的模式,引入了一种形变圆波导。在波导中的本征模式通过微扰分析理论推断,并且研究了一些公共模式的传输特性。此分析显示在工作TE01模式和其他模式之间通过变形圆波导可以获得显然的模式间隔,特别是与TE01模式有着高度相似场分布图的TE02模式。根据分析,设计了一种滤波器,其四个辐射缝隙被引入来把波导中寄生模式的功率耦合出去同时保证TE01模式的传输。在Ka频带设计,制造并实测此模式滤波器的样品。输入和输出辐射场的实测有力地(qualitatively)保证了所提出的波导滤波器的性能。传输实测结果进一步有力地显示了寄生模式被有效滤除了,同时工作的TE01模式衰减得很少。
索引词:
回旋行波管,高功率,模式滤波,大型波导,槽辐射
简介:
回旋行波管,在毫米波段具有高峰值功率,高平均功率和宽带宽的输出波,最近已经被集中研究了因为它们在成像雷达,电信,电子对抗措施(electronic counter measures,ECM)。由于其低欧姆损耗,圆波导TE01模式通常被用为回旋行波管系统的工作模式和长距离传输线的高功率传输。为了避免功率分解(breakdown)并降低传输衰减,高度放大的圆波导器件/设备被用于高功率系统。在此,过大度被定义为波导半径和自由空间波数。然而,在沿着这些过大的器件/设备,由于波导形变或者不连续,从TE01模式到杂模的不想要的转换发生了。详细地说,圆波导TE01模式可以被部分地转换为在波导锥形中的高次模TE02模式和TE03模式因为在半径上的改变,并且TE01模式斜接弯头(miter)将会导致TE02模式和TE03模式的生成因为一个模式转换器在反射器位置被用于减小衍射损耗(diffraction loss)。此外,一些其他的模式例如TE11,TM11,TE21也很统一被激励由于波导的形变或者模式转变器的使用。这些不期望的模式会影响全功率回旋行波管的工作这是因为一些能量将会从下锥,模式转换器和不理想的负载反射。此外,这些不工作模式的出现能够改变场分布图并且会在波导的不均匀性(inhomogeneity)中提高谐振点。因此,设计一个高功率波导滤波器,其能够消除这些寄生模式而不影响工作模式,其很有必要对不同波导截面结构并且为回旋行波管避免电弧现象(arcing)。
为了衰减这些不期望的模式,使用了几种波导滤波方法。过大波导滤波器例如电阻壁(resistive-wall)滤波器,螺旋线波导滤波器和空间环滤波器能有效低衰减或者辐射不想要的模式,
和
.。然而,这些滤波器对于吸收高次的圆对称模式TE0n模式并不有效。事实上,高次TE0n模式与圆柱波导内部的TE01模式接近类似,这使得从工作的TE01模式中消除TE0n模式很困难。许多波导滤波器例如波耦合类型,金属扇区类型和谐振槽型其能够抑制这些TE0n模式的传输已经被提出了 。然而,这些滤波器不适用于高功率和低损耗传输线因为它们在大直径的情况下并不有效。 一种反相类型的滤波器以相同的输入输出直径作为波导线,并且结果显示可以实现40-80GHz上TE02模式和TE03模式多于16dB的衰减同时TE01模式的插损在对应频带上像0.2dB一样小。尽管可以实现一个好性能,他们的结构非常复杂,并且需要加工精度的高要求因为在半圆波导的公共壁上使用了小的耦合槽。此外,所提出的反向类型的滤波器不适用于非圆模式例如TE11,TE21和TM11模式根据其滤波原则。
在本文中,一种用于圆波导TE01模式高功率传输线的过大多模波导滤波器包含一组波导过渡段和不希望的模式分离部分,被提出了。为了抑制寄生模式的传输,引入了一种带有长槽的形变圆波导。在形变圆波导种的本征模由微扰分析理论研究了。本征模的传播分析揭示了在形变圆波导上的长槽能够激励对于不期望模式的波导外的强耦合,并且对于工作的TE01模式没有影响。设计,生产并实测了一种所提出的波导滤波器的样品并且结果显示在理论预测和实测之间吻合得很好。文章的剩余部分如下:多模滤波的工作原理在第二部分给出。为了获得一个优化的滤波效应,分析了波导模式随着相对形变变化的磁场和传输损耗。在第三部分,为圆波导TE01模式高功率传输线设计了一种过大的多模波导滤波器。在第四部分,给出了所提出的滤波器的制造和实测结果。在第5部分给出了结论。
多模滤波理论分析
为了最小化圆波导TE01模式的传输性能并提高高功率波导传输的工作稳定性,在此考虑通过辐射不希望的模式的传输型替代反射型是为了纯化传输波束。考虑到如果在角向方向上引入形变,在圆波导中的本征模的场分布能够改变,通过在圆波导的角向方向上引入四个一致的变化实现的四极波导,被用来构建图1中的滤波器。
四极波导的十字截面表达式为
其中是平均半径,
是扰动量,
是方位角。
为了获得四极波导的本征模场,实现了扰动分析。对于TE模式,他们需要一个边界条件
其中是波导内部表面的归一化单位质量,其在笛卡尔坐标系中有着以下表达式当波导壁微扰为:
把(3)代入(2)中,对于TE模式的边界条件可以写为:
TE模式的纵向场可以表示为: