【Pytorch】torch.utils.tensorboard

本文介绍了如何使用Tensorboard进行日志可视化,包括通过SummaryWriter创建logs目录,用add_image展示图片,以及利用add_graph来查看模型结构。这些工具对于深度学习模型的训练监控非常有帮助。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 使用方法

  • 写好代码,生成文件夹logs
  • 到logs所在目录(当前目录)下,打开终端运行 tensorboard --logdir=logs
  • 根据提示打开页面 http://localhost:6006/

2. 看图片 SummaryWriter().add_image()

from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

writer = SummaryWriter('logs')
img_tensor = torch.randn((3, 3200, 1800))
writer.add_image('test', img_tensor)
writer.close()

在这里插入图片描述

2. 看模型 SummaryWriter().add_graph()

from torch.utils.tensorboard import SummaryWriter

writer = SummaryWriter('logs')
writer.add_graph(MyModule(), torch.randn(2, 3, 256, 256))
writer.close()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值