详解torch.nn.utils.clip_grad_norm_ 的使用与原理


免费链接: Blogger(需翻Q)


clip_grad_norm_的原理

本文是对梯度剪裁: torch.nn.utils.clip_grad_norm_()文章的补充。所以可以先参考这篇文章

从上面文章可以看到,clip_grad_norm最后就是对所有的梯度乘以一个clip_coef,而且乘的前提是clip_coef一定是小于1的,所以,按照这个情况:clip_grad_norm只解决梯度爆炸问题,不解决梯度消失问题

clip_grad_norm_参数的选择(调参)

从上面文章可以看到,clip_coef的公式为:

<think>嗯,用户问的是如何替换已弃用的torch.nn.utils.clip_grad_norm函数,并正确使用新的clip_grad_norm_。首先,我需要确认这两个函数的区别。根据引用内容,clip_grad_norm_是直接修改原Tensor,而旧函数不会。所以,替换的关键在于使用新函数名,并且注意它是否在原地操作。 然后,用户可能需要具体的步骤和示例代码。根据引用,clip_grad_norm_应该在反向传播之后,优化器更新参数之前调用。所以正确的流程应该是loss.backward(),然后clip_grad_norm_,再optimizer.step()。 还需要注意参数的使用,比如max_normnorm_type。可能需要解释这些参数的作用,比如max_norm是梯度裁剪的阈值,norm_type是范数类型,默认是L2范数。 另外,用户可能关心如何验证梯度是否被正确裁剪,可能需要给出检查梯度的方法,比如遍历模型参数并打印梯度。 还要提到错误处理,比如旧函数已经被弃用,使用时会提示错误,应该替换为新的函数。 最后,示例代码应该展示完整的训练循环,包括模型定义、损失计算、反向传播、梯度裁剪和优化器步骤。同时,要提醒用户新函数是原地操作,不需要赋值。 总结下来,回答的结构应该是:1. 替换方法,2. 使用步骤,3. 参数说明,4. 示例代码,5. 注意事项,6. 验证方法。这样用户就能清楚如何正确使用新函数了。</think>### 梯度裁剪函数替换使用教程 #### 1. 替换已弃用函数的方法 原函数`torch.nn.utils.clip_grad_norm`已弃用,应替换为带下划线的`torch.nn.utils.clip_grad_norm_`。两者的核心区别在于: - 新函数会**原地修改梯度张量**(无需返回值赋值) - 旧函数返回梯度张量的范数值,但不会修改原张量[^1] #### 2. 正确使用步骤 ```python from torch.nn.utils import clip_grad_norm_ # 定义模型和优化器 model = MyModel() optimizer = torch.optim.Adam(model.parameters()) for inputs, targets in dataloader: # 前向传播 outputs = model(inputs) loss = criterion(outputs, targets) # 反向传播 optimizer.zero_grad() loss.backward() # 梯度裁剪(关键步骤) clip_grad_norm_(model.parameters(), max_norm=5.0, norm_type=2) # 使用L2范数 # 参数更新 optimizer.step() ``` #### 3. 核心参数说明 | 参数名 | 类型 | 默认值 | 作用 | |-----------|-------|--------|-------------------------------| | max_norm | float | 必需 | 梯度范数的最大允许值 | | norm_type | float | 2 | 范数类型(常用2表示L2范数) | | error_if_nonfinite | bool | False | 是否在无穷范数时抛出异常[^2] | #### 4. 注意事项 - **执行顺序**:必须在`loss.backward()`之后、`optimizer.step()`之前调用 - **梯度监控**:可通过返回值获取裁剪前的梯度范数值: ```python total_norm = clip_grad_norm_(..., max_norm=5.0) print(f"Gradient norm before clipping: {total_norm}") ``` - **参数选择**:推荐初始值`max_norm=5.0`,根据训练稳定性调整 #### 5. 验证梯度裁剪效果 ```python # 裁剪后检查梯度 for param in model.parameters(): if param.grad is not None: print(f"Parameter gradient norm: {param.grad.norm(2)}") ``` #### 6. 常见错误处理 若出现`AttributeError: module 'torch.nn.utils' has no attribute 'clip_grad_norm'`,说明: 1. 未正确导入新函数 2. 错误地使用了旧函数名
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iioSnail

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值