人工神经网络(ANN)及BP算法

本文介绍了神经网络的基本结构,从逻辑回归过渡到神经元,探讨了为什么需要神经网络来解决非线性可分问题。阐述了神经网络的表达力与过拟合之间的关系,并详细解析了反向传播(BP)算法的工作原理,通过实例展示了如何计算误差并更新权重。
摘要由CSDN通过智能技术生成
                                   
      

1  什么是神经网络

1.1 基本结构

这里写图片描述
说明:

  1. 通常一个神经网络由一个input layer,多个hidden layer和一个output layer构成。
  2. 图中圆圈可以视为一个神经元(又可以称为感知器)
  3. 设计神经网络的重要工作是设计hidden layer,及神经元之间的权重
  4. 添加少量隐层获得浅层神经网络SNN;隐层很多时就是深层神经网络DNN

1.2 从逻辑回归到神经元

LinearRegression模型:
这里写图片描述

sigmoid函数:
这里写图片描述
LR可以理解为如下结构:
这里写图片描述

所以逻辑回归是一个单层感知器(没有隐层)结构。

如果你觉得这篇文章看起来稍微还有些吃力,或者想要系统地学习人工智能,那么推荐你去看床长人工智能教程。非常棒的大神之作,教程不仅通俗易懂,而且很风趣幽默。点击这里可以查看教程。

2 为什么需要神经网络

首先,神经网络应用在分类问题中效果很好。  工业界中分类问题居多。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值